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Abstract— Parameter estimation methods to provide
data-based models to control complex dynamical systems
are reviewed. Starting from least square minimization of
the equation error, the tutorial provides an overview of how
different perspectives of parameter estimation lead to various
algorithms that are used in diverse contexts. Both statistical
and deterministic approaches are discussed, and the utility
of model inferences are explained. The discussions provide a
context and review relevant background with respect to three
application papers involving recent advances in Gaussian
Process Regression (GPR), state estimation approaches and
data-driven modeling.

I. INTRODUCTION

Advances in materials science and manufacturing fuel the
explosive growth of next generation autonomous systems.
Finding fundamental ways to integrate these innovations
with appropriate sensing, actuation and embedded computing
is necessary to engineer effective systems that meet
ever increasing performance goals. Emerging frontiers in
robotics and autonomous systems (e.g., micro air vehicles,
humanoid robots, and soft robotics) represent the technology
pushes [19], [36], [39], [52], [56], [57] to integrate
multiphysical models, while the commercial pulls associated
with applications such as self driving cars, autonomous
aerial vehicles, humanoid and personal robotic platforms
typify the path breaking societal needs for this integration
[11], [45], [58], [62]. Mathematical modeling of physical
systems is at the core of effective integration of autonomous
systems. Actuators, sensors and the dynamical processes
governing the subsystem components need to be represented
mathematically such that the signals and system managing
the interfaces between the subsystems that constitute the
autonomous operations are engineered in a compatible
fashion. Most often, engineering approximations are made
in simplifying the infinitely complex component technology
models. After integration however, appropriate calibration
and parameter estimation of the simplified model is essential
to assign the correct values of the model parameters in
order to make it relevant and representative for its effective
integration into other subsystems.

The aim of this tutorial paper in parameter estimation
methods is to summarize various approaches to estimate
parameters that are most often applied in engineering
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practice and discuss their broader utility in modeling and
control of dynamical systems. In particular, the parameter
estimation approaches are broadly organized into direct
approaches for algebraic and dynamical systems and indirect
approaches that use other approaches like state estimation
to estimate parameters. The tutorial session has dedicated
papers associated with each of these topics. This paper aims
at providing a historical context to the three papers that focus
on application of parameter estimation approaches of various
types to estimate parameters in complex dynamical system
applications. The first companion paper to this tutorial
involves an application of a Gaussian Process Regresion
(GPR) to model reduction of hypersonic dynamical systems
for control applications by Huang [20]. A tutorial on the use
of recent advances in Data-Driven modeling system called
SINDy is presented by Fasel et al [14]. An extended Kalman
filter is applied to estimate an unknown input associated with
the plasma dynamical system is shown in the third paper [17]
to demonstrate the application of state estimation approaches.
Quantitative measures of sensitivity of the states

II. PARAMETER ESTIMATION METHODS: DIRECT
APPROACHES

Linear least squares approach is among the most
popular approaches for parameter estimation, and forms the
cornerstone of data-based modeling [10], [48]. At the outset,
the analyst is given a set of m measurements y ∈ Rm×1 that
are related to the n unknown parameters θ ∈ Rn×1 using a
linear model given in Eq. 1.

y = H(ω)θ + ν (1)

where ω is a function of the state dynamics or other
independent variables such as time or frequency. Frequently,
number of measurements exceeds the number of parameters
and an exact solution is not possible, therefore, following
Gauss, the analyst provides a best estimates of these
parameters by minimizing the sum squares of the equation
errors of the m conditions specified by the measurements
provided (primarily founded on the underlying model of
Eq. 1) facilitates a closed form solution to the parameter
estimation problem, written as

θ̂ =
(
HTR−1H

)−1
HTR−1y, (2)

where the matrix R is a weight matrix associated with the
measurements involved. While the equations of 1 can be
solved by minimizing other measures (sum of absolute values
or the minimization of the equations with the largest residual
error), least squares solution is the most prevalent approach,



owing to the fact that a compact formula of Eq. 2 provides a
solution to the system of equations. The minimization of
sum of absolute values of the equation error denoted by
the one norm, ‖y − H(ω)θ‖1 or the minimization of the
worst case measurements, denoted by the infinity norm of
the equation error, ‖y − Hθ‖∞ are equally well posed.
Both of these problems are convex in nature, and therefore
unique solutions are guaranteed for each of these problems
[7], [35]. In fact, any p norm can be considered. However,
it can be shown that the parameter estimation in each of
these cases leads to a mathematical linear program. Since
the solution to such a problem involves computations, they
are not very popular. However, literature shows that these
solutions are robust in nature to certain types of uncertainties
associated with the model error. That is to say when the
parameter estimation error ν is non-Gaussian, the likelihood
functional formed using the characteristics of the probability
density function (PDF) of the equation error ν, denoted
by p(ν) will provide a better approach to solve for the
parameter θ̂ [10], [49], [50]. The fundamental principles
of Hilbert space approximations involved in solving this
system of equations various vector spaces form an integral
part of engineering systems analysis [35]. Recently, these
approaches are forming an important element of solution of
high dimensional partial differential equations [1], [2]. Since
the cost functionals are convex, the deterministic approaches
that minimize an appropriate measure of the equation used
gradient descent type approaches early on in systems and
control [4], [5].

Earliest use of parameter estimation in control of practical
dynamical systems is seen in the development of regulators
using the frequency response functions obtained from
empirical data [42]. Earliest input-output approach for
compensator design involves the use of parameter estimation
methods to identify a transfer function between the input u(t)
to a dynamical system and the output signals sensed by the
sensors measuring y(t). A dynamical relationship between
the outputs and the inputs can be established in the Laplace
domain by looking at the frequency response function that
examines the ratio of the output signal to the input. In a
physical problem, the frequency response function, g(s) is
typically determined using the ratio of correlation functions,
written as

y(s)

u(s)
= g(s) ≈ F [y(t)]F [u(t)]∗

F [u(t)]F [u(t)]∗
, (3)

where s is the Laplace variable, and F(.) denotes the Fourier
transform of a signal. Also known as the transfer function,
an estimate for the frequency response function is facilitated
better in discrete time using an application of the Discrete
Fourier Transform (DFT) on sampled empirical data [43],
[51]. By utilizing the approximation z ≈ esdT where dT
is the sample time, the discrete time frequency response
function is a rational polynomial given by

gd(z) =
n(z,p)

d(z,p)
, (4)

where n(z,p) and d(z,p) are the numerator and
denominator polynomials respectively. The fact that the
coefficients defining these parameters appear linearly in the
transfer function description of Eq. 4, makes the dynamic
modeling problem a parameter estimation problem. From
spectral response data, typically the measurements of gdzi
are available at certain choices of the sampling frequency
zi = ejωidT , with j2 = −1 from the correlation functions (or
the composite Frequency Response Function) of Eq. 3. Then
the parameter estimation problem for data-based modeling is
written as

min
p
J = ‖gd(zi)−

n(zi,p)

d(z,p)
‖ω (5)

where ‖‖ω is a norm chosen to represent the weights assigned
for participating frequencies. Frequently, the minimization in
Eq. 5 is a non-convex program, so engineering applications
minimize an equivalent function ‖gd(zi)d(z,p)−n(zi,p)‖ω
such that a linear least squares solution can be used to
estimate the model parameters [24], [34]. However, this
practical solution causes some problems, as it interferes
with the weights involved in the norm used for parameter
estimation. In frequency domain, weighting is an important
part of the modeling process [48]. This is because of the
fact that the spectral weighting frequently determines the
degree to which the approximated transfer function captures
the physics important for modeling. It is well known that
for control applications, modeling typically only requires
a few of the Markov parameters of the system [33], [47],
[59]. Therefore, the control design also gets impacted by
this choice. Furthermore, since the measured data gd(zi) are
noisy, the estimated parameters are random variables with
a mean and variance [54], [55]. Appropriate modifications
of the parameter estimation problem like a total least
squares formulation [43], and various information theoretic
formulations have been studied in the literature [3], [60],
[61].

Among the most interesting recent advances in parameter
estimation is the Gaussian Process Regression (GPR)
approach for both modeling and classification [44]. GPR
regression builds on the principles of Bayesian inference
and uses measurement data to build a likelihood functional
based upon mean and covariance functions as opposed to
constants based on statistics of the measurement data. This
key difference accommodates a wide variety of covariance
equivalent models that explain the measurements and also for
a non-parametric method for statistical parameter estimation.
Hyper-parameters associated with the mean and covariance
process dictate the performance of the approach. In this
tutorial, a GPR approach to facilitate dynamic modeling of
complex models used for guidance, navigation and control of
hypersonic vehicles is provided in a separate detailed article
by Huang [20]. We dedicate the fundamentals of GPR and
other non-parametric approaches for modeling dynamical
system to the companion paper of this session.



III. ESTIMATION OF DYNAMICAL SYSTEM PARAMETERS:
DIRECT APPROACHES

If the objective of modeling extends beyond the needs
specified by the control system, parameter estimation
approaches need to incorporate more sophisticated
approaches to accomplish these objectives. One of the
key applications for parameter estimation in dynamical
systems is to achieve closure with physics based models
[27], [37], [38]. This is particularly true in several physical
applications that are non-minimal. Flexible space structures
are particular applications where the closure between physics
based models and data driven approaches is necessary. Since
the dynamical system is essentially uncontrollable, model
closure between the physics based design reference model
and the empirical data-driven model is essential to design
a control system that ensures that no energy is spent on
exciting the uncontrollable modes of the structure [27],
[28]. It is natural to carryout the model closure activities
in time domain using state space models [48]. To this
end, mechanical systems have specialized structure in the
dynamics that is quite useful to assess the system properties
of the matrix second order systems [21]. The physics-based
differential equation model for the state ω can be written
for a general dynamical system as

ω̇ = g(ω,u,p) (6)

where u is the control function, p is the parameter of the
dynamical system. In mechanical systems, these parameters
can represent the mass, stiffness or damping ratio of the
system. Adaptive identification and control has an illustrious
past. Identification of parameters of dynamical systems
with simple optimization strategies like gradient descent
were used in earlier parts of the adaptive identification
[4], [6], [15], [16], [23], [30]. Later works studied the
imposition of stability constraints on the control system has
lead to excellent sources of scholarship [22], [40], [46]. In
addition to using physics based models for online parameter
identification, the formulations of stable and robust adaptive
control laid the foundations for machine learning using
arbitrary basis function models in the dynamics [41]. The
unique aspect of the adaptive identification control is the
infusion with Lyapunov’s stability theory [32].

If the parameter vector p appears linearly in the dynamic
model function g(ω,u,p), all the approaches, including the
least squares approaches discussed in the previous parameter
estimation section are directly applicable. Recent textbooks
in adaptive control theory have outlined these formulations
very clearly [22], [40], [46]. Various formulations of the
parametric models can be used to transform the differential
equation into algebraic regression models [41]. Stable filters
and realization theory is exploited to realize the regression
models in time domain, and excellent results like the
Yakubovitch lemmas are used to prove stability of the
identification approach in a certainty equivalence formulation
of nonlinear systems [16]. Parameter convergence proofs
and sufficient conditions for the signals in the regression

are also derived in the literature [6]. To demonstrate a
key implementation detail in the regression vector, let us
consider the dynamics of Eq 6 and assume that the state ω
is available for measurement. Further, let us assume that the
parameter vector is linear, that is to say that g(ω,u,p) =
G(ω,u)p. The transformation of the dynamical system into
a linear parametric model for parameter estimation is still not
straightforward. To facilitate this, a filter is applied on both
sides of Eq. 6. This process leads to an algebraic system of
equations z−φ(ω,u)p that can be minimized at each instant
of time. Note that the signal z(t) realized as ω −W (s)ψ
and φ is realized as W (s)G(ω,u), where W (s) is a strictly
passive real (SPR) filter that is implemented using realization
theory of linear systems [29]. In the most simplistic case
when W (s) = 1

s+λ , ψ is the solution of the differential
equation ψ̇ = −λψ+ω. Let us now consider an example that
demonstrates the use of system theoretical concepts to solve
a dynamic parameter estimation problem using parameter
estimation techniques developed for algebraic systems.

To consider an interesting parameter estimation process,
let us consider a nonlinear dynamical system that is typically
used to model multiphysical processes such as the plasma
dynamical systems [18]. The same application will be
demonstrated using a state estimation approach in a dedicated
paper in the tutorial session [17]. This particular example
illustrates the fact that the approach for parameter estimation
can be used directly to also track slowly varying parameters
as identified in related work [53].

One of the key physical models of plasma discharge is
provided by the ordinary differential equations governing the
number of ion and neutral atoms in a plasma environment,
given by ni and nn, and the ion bulk velocities denoted by
ui. The global model that provides a simplistic description
of the change in the numbers of atoms, as a function of
time can be written in the so-called 0-D discharge ordinary
differential equation written as

ṅi = −
1

L
nnui + nnniζ(Te), (7)

ṅn = −nn
(un − uint)

L
− nnniζ(Te), (8)

where ni and nn are the ion and neutral atom number
densities, ui and un are the bulk velocity of the ions and
neutral atoms, uint is the injection velocity of the neutral
atoms from the anode, L is the characteristic length of the
ionization region, ζ(Te) is the ionization rate coefficient, and
Te is the electron temperature. In physical problems, the
electron temperature is an implicit function of time, and acts
as an excitation input, affecting the concentration of the ions
and neutrals, making the plasma a dynamic environment.
Based on the predator - prey model, this model captures
the oscillations of the plasma ions that get energized by the
ionization source. To this end, φ(t) (sometimes also denoted
by kion) is the ionization rate coefficient, that is a function
of electron temperature Te, and the uint is the neutral atom
density at the inlet (anode), while L denotes the characteristic
length of the ionization region.



Fig. 1. The nonlinear state time histories associated with the estimation
of unknown input.

Fig. 2. Parameter convergence to estimate unknown input.

While Fig 1 plots the state time histories, Fig 2 shows
the true and estimated input to the system ζ(Te). While the
theory of parameter estimation assumes that this parameter
is constant, appropriate use of instantaneous estimates
and fading memory of the filter formulations used in
the regression process enable us to estimate the time
varying unknown input effectively. This is an interesting
example that demonstrates the broad utility of the parameter
estimation approaches. Specifically this example illustrates
how linear system theory can be used to transform problems
of dynamic parameter estimation to problems involving
parameter estimation in algebraic systems.

Recent advances in sparse approximation approaches
[12], [13] enable extensions of the Hilbert space parameter
estimation tools mainly due to the convexity of the
formulations involved in the optimization process [7].
Brunton et al [8] and others have worked on building upon
these tools for parsimonious modeling of complex physical

phenomena from simulation and experimental data. In this
tutorial, an implementation of their data-driven modeling
tool, SINDy is discussed with illustrative examples [14].

IV. STATE ESTIMATION TECHNIQUES FOR PARAMETER
ESTIMATION

Yet another approach for parameter estimation is to
make use of statistical approaches to estimate the state of
dynamical systems [31]. Mostly following the Kalman filter
approach, Bucy devised statistical approach to estimate the
parameters of a dynamical system by augmenting the state
evolution equation with parameter dynamics ṗ = 0, as shown
in Eq. 10 [9].

ω̇ = g(ω,u,p) (9)
ṗ = 0 (10)

Recent methods for particle filtering and unscented
transformation can also be utilized for this process [25],
[26]. High order quadrature methods can also be used
[2]. The primary difference between deterministic parameter
estimation approaches and the use of statistical approaches
is that a measure of uncertainty associated with the
parameterr estimate is generated by the approaches that use
state estimation fundamentals. Since the augmented state
dynamics is inherently nonlinear in nature, the statistical
version of the parameter estimation problem is fundamentally
non Gaussian even when the dynamics of the problem are
linear. To identify this more clearly, consider the application
of an undamped harmonic oscillator, written as ẍ = − k

mx+
1
mu. Even if we assume the particle is of unit mass,
(i.e., setting m = 1) and simplify the problem with the
stiffness parameter used as the uncertain parameter, the zero
input response given by x(t) = x0 cos

√
kt + ẋ(0)√

k
sin
√
kt

clearly shows a nonlinear dependence of the solution on
the unknown parameter. Furthermore, if one assumes a
uniform distribution for this stiffness parameter, even with
no uncertainty in the process model, the state probabiliity
density function evolves in a non-Gaussian manner. Particle
filters and other approaches can be used to solve this
problem [10]. A useful byproduct of the application of
state estimation methods and information theory is that a
posterior measure of the parameter density function can be
derived. This measure is not directly available when one
considers parameter estimation approaches. An application of
state estimation tools on a slowly varying unknown input in
plasma dynamical systems is shown in the companion paper
[17]. Application specific challenges and the challenges
associated with the use of an extended Kalman filter
that simplifies the generic problem by assuming Gaussian
distributions for propagation and update are considered in
the paper, outlining key aspects of the parameter estimation
methods that build upon state estimation tools.



V. SENSITIVITY ANALYSES FOR PARAMETER
ESTIMATION

In parameter estimation applications, one of the most
interesting aspects is the sensitivity of the parameters to
the changes in the states ω(ω0,p,u). In the fundamental
parameter estimation problem of Eq. 1, the regressor matrix
H is important in solving the inverse problem of estimating
the parameter θ. While it is more difficult to develop a direct
sensitivity measure, it is certainly easier to use parameter
influence matrix and use it to develop an identifiability
measure. This theory is now briefly developed. Parameter
influence matrix ψ(t, t0) := ∂ω

∂θ models the ability of the
analyst to estimate the parameter θ from the system of
equations. This can be seen by looking at the analytic
dependence of the states on the parameters of interest by
expanding the state using a Taylor series expansion: ω =
ωθ̂+ψ(θ̂−θ)+. . . . The parameter influence matrix however
can be calculated directly using the differential equation
ψ̇ =

[
∂g
∂ω

]
ψ +

[
∂g
∂θ

]
. The influence matrix is a function

of the trajectory, i.e., an implicit function of the initial state
ω0, u, the time elapsed t− t0 and the true parameter values
θ. The linear independence of the columns of the parameter
influence matrix is necessary for the regressor matrix to be
well conditioned to solve for the parameters from the states.
A measure of the linear independence can be derived from
the observability grammian, which in turn is derived from the
linear independence of time varying functions [48]. Since the
identifiability measure is a positive definite matrix, it can be
compared between different sets of trajectories, which in-turn
are implicit functions of distinct initial conditions, parameter
estimates and excitation inputs. A comparison of relative
measures of identifiability is shown in Fig. 4, where different
state trajectories shown in Fig. 3 are used for identification.
The dynamics of the problem is that of a rigid body, whose
attitude dynamics are excited by torque rods. Magnitude
differences of the eigenvalues of the identifiability grammian
show that some trajectories are more exciting than others in
identification process. This is an important topic of future
research in system identification.
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