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Different data-driven system identification methods and algorithms in the field of structures

have been developed, analyzed, and tested for modal parameter identification but inherent

nonlinearities and noise in the data can drastically limit the application of such methods in

order to adequately describe the real system behavior. While classical state-space realization

techniques are, in essence, a least-squares fit to the pulse response measurements, introducing

output auto-correlation and cross-correlations over a defined number of lag values has the

potential to temper the effect of noise. This paper introduces a data-correlation approach to the

time-varying eigensystem realization algorithm (TVERA/DC). As motivational cases to support

this new method, the identification of the vibrational characteristics of a space structure is

considered as well as the dynamical identification of a mechanical system with time-varying

angular velocity.

I. Introduction
As the requirements of space missions continue to grow in complexity, so do the required geometries of the

spacecraft. Large deployable structures on spacecraft have become of increased interest for both scientific measurements

and solar energy collection. These structures have large geometries that cannot be treated under rigid-body assumptions.

Understanding the vibrational characteristics of these structures is paramount to their mission’s success. One concept

to measure the structural shape is to distribute sensors over the surface of the spacecraft and utilize this information

to obtain a data-driven model. The output at any given time is considered a function of the input signal, which

is a function of time. Implicitly, we assume that the input-output data is sufficiently rich and the identified model

will be accurate over awide class of inputs. Thismodel can also be useful for other purposes such as controlling the system.

The recent advances in machine learning, such as artificial neural network (ANN), can be used to find a global

continuous map from system input space to system output space; however, the performance of these algorithms

decreases drastically as the dimension of the system output vector increases. To make this point more clear, consider
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a problem of active control of a flexible space structure. Generally, the system output vector consists of surface

distortion measurements at various spatial points, 𝑂 (103), which are measured by sensors like strain gauges, suns

sensors, stereo vision systems, LIDAR, etc. Therefore, if one seeks a dynamic continuous map between the system

output and input vectors then the dimension of such a map can be as large as the number of measurements, i.e.,

𝑂 (103). However, the dimension of the hidden states of the true system corresponds to the number of dynamic

structural modes of interest. The number of these modes are typically less than 10. So, a system identification algorithm

is desired that can approximate the system output well, while keeping the dimension of the dynamicmap as low as possible.

Many algorithms have been established, some of them deterministic in nature, i.e. without considering noise in

the measured data, and others stochastic, i.e. with formulations minimizing the noise uncertainty in the identification.

During the 90s, building upon initial work by Gilbert and Kalman, several methods have been developed to identify

the most observable and controllable subspace of the system from given input-output (I/O) data [1–5]. Under the

interaction of structure and control disciplines, the eigensystem realization algorithm (ERA) [3, 4] was developed for

modal parameter identification and model reduction of dynamic systems using test data. The algorithm presents a unified

framework for modal parameter identification based on the Markov parameters (i.e., pulse response) making it possible

to construct a Hankel matrix as the basis for the realization of a discrete-time state-space model. A few years later at

NASA, Juang developed a method for simultaneously identify a linear state-space model and the associated Kalman filter

from noisy input-output measurements. Known as the observer/Kalman identification algorithm (OKID) and formulated

entirely in the time-domain, it computes the Markov parameters of a linear system, from which the state-space model

and a corresponding observer are determined simultaneously [6, 7]. The method relies on an observer equation to

compress the dynamics of the system and efficiently estimate the associated system parameters (Markov parameters).

In conjunction with the ERA, the method provides simultaneously both the Markov parameters and the Kalman gain,

extracting all the possible information present in the data. The observer at the core of the method was proven to

be the steady-state Kalman filter corresponding to the system to be identified. Later, the ERA with data correlation

(ERA/DC) is developed [8–11] and while the ERA is, in essence, a least-squares fit to the pulse response measure-

ments, the ERA/DC involves a fit to the output auto-correlation and cross-correlations over a defined number of lag values.

However, the main difficulty in linear system identification applications stems from the interplay of noise and un-

modeled dynamics. Noise, finite length of data, and parameters variation are some of the issues that limit the application

of such methods and there are many instances when this limitation is significant enough that it becomes necessary to

deal with situations where no model in the model set can adequately describe the real system behavior. In addition, most

systems are only linear to a first approximation. Depending on the excitation level, the output is disturbed by nonlinear

distortions so that the linearity assumption no longer holds. This immediately limits the application of the results obtained
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by the linear system identification framework. In parallel, several efforts have been made for developing time-varying

models and to generalize ERA to the case of time-varying systems. Development of methods for time-varying systems

have involved recursive and fast implementations of the time invariant methods by exploring structural properties of the

input–output realizations [12] or by generalizing several concepts in the classical linear time invariant system theory

consistently [5, 13]. Later, the idea of repeated experiments have been introduced [14, 15] and presented as practical

methods to realize the conceptual state space model identification strategies presented earlier. The literature in linear time

varying system identification is limited as compared to LTI system identification by the fact that there are no approaches

to find similarity transformations between the model sequences. In our earlier work [16, 17], it is shown that there exist

special reference frames, in which the identified models are similar to the true model, i.e., state transition matrices share

the same eigenvalues. Using this key result the realizations can be compared across different data sets. This forms the

basis for spectral characterization of the time varying systems and the resulting algorithm is known as the time-varying

eigensystem realization algorithm (TVERA). This paper exploits the TVERA formulation in conjunction with the impor-

tant notion of kinematically similar (topologically equivalent) realizations to assess the validity of the resulting identified

model. Similarly as for ERA/DC, it is possible to introduce a fit to the output auto-correlation and cross-correlations

for TVERA. The bias terms affecting the TVERA when "white" measurement noise is present can be omitted in the

TVERA/DC by properly tuning some of the parameters. The computational steps for the TVERA/DC are almost identical

This paper aims to demonstrate the benefits of including data correlations when in presence of noisy measurements.

Section II will explain the basic concepts of data-correlation for time-invariant system realization (ERA/DC) and will

provide a description of this procedure adapted for time-varying system identification, introducing the time-varying

eigensystem realization algorithm with data-correlation (TVERA/DC). To validate this data-correlation approach,

Section III will consider two examples where the goal is to reproduce the response of a dynamical system from rogue

sensor measurements.

II. Subspace system identification with data-correlation
A discrete-time invariant linear system can be represented by

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 (1a)

𝒚𝑘 = 𝐶𝒙𝑘 + 𝐷𝒖𝑘 (1b)

together with an initial state vector 𝒙0, where 𝒙𝑘 ∈ R𝑛, 𝒖𝑘 ∈ R𝑟 and 𝒚𝑘 ∈ R𝑚 are the state, control input and output

vectors respectively. The constant matrices 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑟×𝑛, 𝐶 ∈ R𝑛×𝑚 and 𝐷 ∈ R𝑟×𝑚 represent the internal

operation of the linear system, and are used to determine the system’s response to any input.
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The basic development of the state-space realization is attributed to Ho and Kalman [2] who introduced the important

principles of minimum realization theory. The Ho-Kalman procedure uses the Hankel matrix to construct a state-space

representation of a linear system from noise-free data. The methodology has been modified and substantially extended

to develop the Eigensystem Realization Algorithm (ERA) [3] to identify modal parameters from measurement data.

A. Time-invariant linear system identification: the eigensystem realization algorithm with data correlation
(ERA/DC)

The eigensystem realization algorithm with data correlations (ERA/DC) includes an additional fit to output

correlations whereas the ERA is basically a least-square fit to the pulse response measurements only. The bias terms

affecting the ERA when noise is present can, in principle, be omitted in the ERA/DC by properly tuning some of the

parameters. The computational steps of the ERA/DC are outlined in this section.

1. Block Correlation Hankel Matrices

The ERA method with data correlation requires the definition of a square matrix of order 𝛾 = 𝑝𝑚,

R𝑯𝑯 (𝑘) = 𝑯(𝑘)𝑯(0)⊤ (2)

=



ℎ𝑘+1 ℎ𝑘+2 · · · ℎ𝑘+𝑞

ℎ𝑘+2 ℎ𝑘+3 · · · ℎ𝑘+𝑞+1

...
...

. . .
...

ℎ𝑘+𝑝 ℎ𝑘+𝑝+1 · · · ℎ𝑘+𝑝+𝑞−1





ℎ1 ℎ2 · · · ℎ𝑞

ℎ2 ℎ3 · · · ℎ𝑞+1

...
...

. . .
...

ℎ𝑝 ℎ𝑝+1 · · · ℎ𝑝+𝑞−1



⊤

(3)

=



𝑞∑︁
𝑖=1

ℎ𝑘+𝑖ℎ
⊤
𝑖

𝑞∑︁
𝑖=1

ℎ𝑘+𝑖ℎ
⊤
𝑖+1 · · ·

𝑞∑︁
𝑖=1

ℎ𝑘+𝑖ℎ
⊤
𝑝+𝑖−1

𝑞∑︁
𝑖=1

ℎ𝑘+𝑖+1ℎ
⊤
𝑖

𝑞∑︁
𝑖=1

ℎ𝑘+𝑖+1ℎ
⊤
𝑖+1 · · ·

𝑞∑︁
𝑖=1

ℎ𝑘+𝑖+1ℎ
⊤
𝑝+𝑖−1

...
...

. . .
...

𝑞∑︁
𝑖=1

ℎ𝑘+𝑝+𝑖−1ℎ
⊤
𝑖

𝑞∑︁
𝑖=1

ℎ𝑘+𝑝+𝑖−1ℎ
⊤
𝑖+1 · · ·

𝑞∑︁
𝑖=1

ℎ𝑘+𝑝+𝑖−1ℎ
⊤
𝑝+𝑖−1


. (4)

where ℎ𝑘 are Markov parameters in the case of forced systems or directly outputs of the system in the case of autonomous

systems. Hankel matrices 𝑯(𝑘) are defined the same way as in the ERA. Note that the data correlation matrix R𝑯𝑯 (𝑘)

can be smaller in size than the Hankel matrix 𝑯(𝑘) if 𝑞𝑟 ≤ 𝑝𝑚 = 𝛾. For the case when 𝑘 = 0, the correlation matrix
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R𝑯𝑯 (0) becomes

R𝑯𝑯 (0) = 𝑯(0)𝑯(0)⊤ (5)

=



ℎ1 ℎ2 · · · ℎ𝑞

ℎ2 ℎ3 · · · ℎ𝑞+1

...
...

. . .
...

ℎ𝑝 ℎ𝑝+1 · · · ℎ𝑝+𝑞−1





ℎ1 ℎ2 · · · ℎ𝑞

ℎ2 ℎ3 · · · ℎ𝑞+1

...
...

. . .
...

ℎ𝑝 ℎ𝑝+1 · · · ℎ𝑝+𝑞−1



⊤

(6)

=



𝑞∑︁
𝑖=1

ℎ𝑖ℎ
⊤
𝑖

𝑞∑︁
𝑖=1

ℎ𝑖ℎ
⊤
𝑖+1 · · ·

𝑞∑︁
𝑖=1

ℎ𝑖ℎ
⊤
𝑝+𝑖−1

𝑞∑︁
𝑖=1

ℎ𝑖+1ℎ
⊤
𝑖

𝑞∑︁
𝑖=1

ℎ𝑖+1ℎ
⊤
𝑖+1 · · ·

𝑞∑︁
𝑖=1

ℎ𝑖+1ℎ
⊤
𝑝+𝑖−1

...
...

. . .
...

𝑞∑︁
𝑖=1

ℎ𝑝+𝑖−1ℎ
⊤
𝑖

𝑞∑︁
𝑖=1

ℎ𝑝+𝑖−1ℎ
⊤
𝑖+1 · · ·

𝑞∑︁
𝑖=1

ℎ𝑝+𝑖−1ℎ
⊤
𝑝+𝑖−1


. (7)

The matrix R𝑯𝑯 (0) consists of auto-correlations of Markov parameters such as
𝑞∑︁
𝑖=1

ℎ𝑖ℎ
⊤
𝑖 and cross-correlations such as

𝑞∑︁
𝑖=1

ℎ𝑖ℎ
⊤
𝑖+1 at lag time values in the range ±𝑝, summed over 𝑞 values. If noises in the Markov parameters (or outputs)

are not correlated, the correlation matrix R𝑯𝑯 (0) will contain less noise than the Hankel matrix 𝑯(0).

In terms of controllability and observability matrices, R𝑯𝑯 (𝑘) can be written as

R𝑯𝑯 (𝑘) = 𝑶 (𝑝) 𝐴𝑘𝑹 (𝑞)𝑹 (𝑞)⊤𝑶 (𝑝)⊤ = 𝑶 (𝑝) 𝐴𝑘𝑹 (𝛾) , (8)

where 𝑹 (𝛾) = 𝑹 (𝑞)𝑹 (𝑞)⊤𝑶 (𝑝)⊤.
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The data correlation matrix R𝑯𝑯 (𝑘) can be used to form a block correlation Hankel matrix

H (𝑘) =



R𝑯𝑯 (𝑘) R𝑯𝑯 (𝑘 + 𝜏) · · · R𝑯𝑯 (𝑘 + 𝜁𝜏)

R𝑯𝑯 (𝑘 + 𝜏) R𝑯𝑯 (𝑘 + 2𝜏) · · · R𝑯𝑯 (𝑘 + (𝜁 + 1)𝜏)
...

...
. . .

...

R𝑯𝑯 (𝑘 + 𝜉𝜏) R𝑯𝑯 (𝑘 + (𝜉 + 1)𝜏) · · · R𝑯𝑯 (𝑘 + (𝜉 + 𝜁)𝜏)


=



𝑶 (𝑝)

𝑶 (𝑝) 𝐴𝜏

...

𝑶 (𝑝) 𝐴𝜉 𝜏


𝐴𝑘

[
𝑹 (𝛾) 𝐴𝜏𝑹 (𝛾) · · · 𝐴𝜁 𝜏𝑹 (𝛾)

]

= 𝑶 ( 𝜉 ) 𝐴𝑘𝑹 (𝜁 ) .

(9)

For the case when 𝑘 = 0,

H (0) =



R𝑯𝑯 (0) R𝑯𝑯 (𝜏) · · · R𝑯𝑯 (𝜁𝜏)

R𝑯𝑯 (𝜏) R𝑯𝑯 (2𝜏) · · · R𝑯𝑯 ((𝜁 + 1)𝜏)
...

...
. . .

...

R𝑯𝑯 (𝜉𝜏) R𝑯𝑯 ((𝜉 + 1)𝜏) · · · R𝑯𝑯 ((𝜉 + 𝜁)𝜏)


=



𝑶 (𝑝)

𝑶 (𝑝) 𝐴𝜏

...

𝑶 (𝑝) 𝐴𝜉 𝜏



[
𝑹 (𝛾) 𝐴𝜏𝑹 (𝛾) · · · 𝐴𝜁 𝜏𝑹 (𝛾)

]

= 𝑶 ( 𝜉 )𝑹 (𝜁 ) .

(10)

𝜏 is an integer chosen to chosen to prevent significant overlap of adjacent correlation blocks. The matrices 𝑹 (𝜁 ) and

𝑶 ( 𝜉 ) are called the block correlation controllability and observability matrices.
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2. Hankel norm approximation

Similarly to the ERA, the ERA/DC process continues with the factorization of the block correlation matrixH (0)

using singular value decomposition so that

H (0) = U𝚺V⊤ =

[
U

(𝑛)
U

(0)
] 

𝚺 (𝑛) 0

0 𝚺 (0)



V (𝑛)⊤

V (0)⊤

 = U
(𝑛)𝚺 (𝑛)

V
(𝑛)⊤ +U

(0)𝚺 (0)
V

(0)⊤︸              ︷︷              ︸
≃0

≃ U
(𝑛)𝚺 (𝑛)

V
(𝑛)⊤,

(11)

and

H (0) = U
(𝑛)𝚺 (𝑛)

V
(𝑛)⊤ = 𝑶 ( 𝜉 )𝑹 (𝜁 ) ⇒


𝑶 ( 𝜉 ) = U

(𝑛)𝚺 (𝑛)1/2

𝑹 (𝜁 ) = 𝚺 (𝑛)1/2V (𝑛)⊤
. (12)

Again, this choice makes both 𝑶 ( 𝜉 ) and 𝑹 (𝜁 ) balanced.

3. Minimum Realization

From Eq. (10) we have directly

𝑶 (𝑝) = 𝑬 (𝛾)⊺𝑶 ( 𝜉 ) = 𝑬 (𝛾)⊤
U

(𝑛)𝚺 (𝑛)1/2. (13)

From Eq. (10), an expression of 𝑹 (𝑞) can be found

𝑹 (𝑞) = 𝑶 (𝑝) †𝑯(0) =
[
𝑬 (𝛾)⊤

U
(𝑛)𝚺 (𝑛)1/2

]†
𝑯(0), (14)

and a realization is shown to be

�̂� = 𝑶 ( 𝜉 ) †
H (1)𝑹 (𝜁 ) † = 𝚺 (𝑛)−1/2U (𝑛)⊤

H (1)V (𝑛)𝚺 (𝑛) −1/2, (15a)

�̂� = 𝑹 (𝑞)𝑬 (𝑟) =
[
𝑬 (𝛾)⊤

U
(𝑛)𝚺 (𝑛)1/2

]†
𝑯(0)𝑬 (𝑟) , (15b)

�̂� = 𝑬 (𝑚)⊤𝑶 (𝑝) = 𝑬 (𝑚)⊤𝑬 (𝛾)⊤
U

(𝑛)𝚺 (𝑛)1/2, (15c)

�̂� = ℎ0. (15d)
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B. Time-varying linear system identification: the time-varying eigensystem realization algorithm with data-
correlation (TVERA/DC)

From a perspective of generalizing the classical Ho-Kalman approach with ERA and ERA/DC, this paper develops

an extension of the time-varying eigensystem realization algorithm (TVERA) by including data correlations in the

process (TVERA/DC). With the assumption that noises in data are not correlated, the resulting procedure takes ad-

vantage of the fact that auto-correlation and cross-correlation between outputs will contain less noise than original outputs.

Consider that we obtained 𝑀 × 𝑁 experiments, arranged in 𝑀 batches of 𝑁 experiments. Similarly as the TVERA

procedure [16, 17], form the initial condition response experiments Hankel matrix

�̃�
(𝑝,𝑁 ) ,# 𝑗
𝑘 =



𝒚#1, 𝑗
𝑘

𝒚#2, 𝑗
𝑘

· · · 𝒚#𝑁, 𝑗

𝑘

𝒚#1, 𝑗
𝑘+1 𝒚#2, 𝑗

𝑘+1 · · · 𝒚#𝑁, 𝑗

𝑘+1
...

...
. . .

...

𝒚#1, 𝑗
𝑘+𝑝−1 𝒚#2, 𝑗

𝑘+𝑝−1 · · · 𝒚#𝑁, 𝑗

𝑘+𝑝−1


= 𝑶 (𝑝)

𝑘
𝑿 (𝑁 ) ,# 𝑗

𝑘
, 𝑗 = 1 . . . 𝑀. (16)

𝑶 (𝑝)
𝑘

∈ R𝑝𝑚×𝑛 is the observability matrix at time 𝑘 and 𝑿 (𝑁 ) , 𝑗
𝑘

is the state variable ensemble matrix of batch 𝑗 at time

𝑘 , i.e. the state initial condition responses of experiments of batch 𝑗 at time 𝑘 . Whereas the standard TVERA method

proceeds using �̃� (𝑝,𝑁 ) , 𝑗
𝑘 to derive state-space matrices 𝐴𝑘 and 𝐶𝑘 , the TVERA method with data correlations requires

the definition of a square matrix R̃# 𝑗𝑘 ∈ R𝑝𝑚×𝑝𝑚 such that for 𝑗 = 1 . . . 𝑀 we have

R̃
# 𝑗
𝑘 = �̃�

(𝑝,𝑁 ) , 𝑗
𝑘 �̃�

(𝑝,𝑁 ) , 𝑗⊤
0 (17a)

=



𝒚#1, 𝑗
𝑘

𝒚#2, 𝑗
𝑘

· · · 𝒚#𝑁, 𝑗

𝑘

𝒚#1, 𝑗
𝑘+1 𝒚#2, 𝑗

𝑘+1 · · · 𝒚#𝑁, 𝑗

𝑘+1
...

...
. . .

...

𝒚#1, 𝑗
𝑘+𝑝−1 𝒚#2, 𝑗

𝑘+𝑝−1 · · · 𝒚#𝑁, 𝑗

𝑘+𝑝−1





𝒚#1, 𝑗0 𝒚#2, 𝑗0 · · · 𝒚#𝑁, 𝑗

0

𝒚#1, 𝑗1 𝒚#2, 𝑗1 · · · 𝒚#𝑁, 𝑗

1

...
...

. . .
...

𝒚#1, 𝑗
𝑝−1 𝒚#2, 𝑗

𝑝−1 · · · 𝒚#𝑁, 𝑗

𝑝−1



⊤

(17b)

=



𝑁∑︁
𝑖=1

𝒚#𝑖, 𝑗
𝑘

𝒚#𝑖, 𝑗0
⊤ 𝑁∑︁

𝑖=1
𝒚#𝑖, 𝑗
𝑘

𝒚#𝑖, 𝑗1
⊤

· · ·
𝑁∑︁
𝑖=1

𝒚#𝑖, 𝑗
𝑘

𝒚#𝑖, 𝑗
𝑝−1

⊤

𝑁∑︁
𝑖=1

𝒚#𝑖, 𝑗
𝑘+1 𝒚

#𝑖, 𝑗
0

⊤ 𝑁∑︁
𝑖=1

𝒚#𝑖, 𝑗
𝑘+1 𝒚

#𝑖, 𝑗
1

⊤
· · ·

𝑁∑︁
𝑖=1

𝒚#𝑖, 𝑗
𝑘+1 𝒚

#𝑖, 𝑗
𝑝−1

⊤

...
...

. . .
...

𝑁∑︁
𝑖=1

𝒚#𝑖, 𝑗
𝑘+𝑝−1𝒚

#𝑖, 𝑗
0

⊤ 𝑁∑︁
𝑖=1

𝒚#𝑖, 𝑗
𝑘+𝑝−1𝒚

#𝑖, 𝑗
1

⊤
· · ·

𝑁∑︁
𝑖=1

𝒚#𝑖, 𝑗
𝑘+𝑝−1𝒚

#𝑖, 𝑗
𝑝−1

⊤


. (17c)

D
ow

nl
oa

de
d 

by
 D

am
ie

n 
G

ue
ho

 o
n 

Ju
ly

 2
4,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

20
72

 



Let a 𝜉 × 𝑀 block correlation Hankel matrix be formed as

H̃
( 𝜉 ,𝑀)
𝑘 =



R̃
#1
𝑘 R̃

#2
𝑘 · · · R̃

#𝑀
𝑘

R̃
#1
𝑘+𝜏 R̃

#2
𝑘+𝜏 · · · R̃

#𝑀
𝑘+𝜏

...
...

. . .
...

R̃
#1
𝑘+( 𝜉−1)𝜏 R̃

#2
𝑘+( 𝜉−1)𝜏 · · · R̃

#𝑀
𝑘+( 𝜉−1)𝜏


=



𝑶 (𝑝)
𝑘

𝑶 (𝑝)
𝑘+𝜏
...

𝑶 (𝑝)
𝑘+( 𝜉−1)𝜏



[
�̃�

(𝑝) ,#1
𝑘 �̃�

(𝑝) ,#2
𝑘 · · · �̃�

(𝑝) ,#𝑀
𝑘𝜏

]
(18)

= 𝑶 ( 𝜉 )
𝑘

�̃�
(𝑀)
𝑘 (19)

with �̃� (𝑝) ,# 𝑗
𝑘 = 𝑿 (𝑁 ) ,# 𝑗

𝑘
𝑿 (𝑁 ) ,# 𝑗
0

⊺
𝑶 (𝑝)
0

⊺
∈ R𝑛×𝑝𝑚 for 𝑗 = 1 . . . 𝑀 . Now, note that

�̃�
(𝑝) ,# 𝑗
𝑘+1 = 𝑿 (𝑁 ) ,# 𝑗

𝑘+1 𝑿 (𝑁 ) ,# 𝑗
0

⊺
𝑶 (𝑝)
0

⊺
= 𝐴𝑘𝑿

(𝑁 ) ,# 𝑗
𝑘

𝑿 (𝑁 ) ,# 𝑗
0

⊺
𝑶 (𝑝)
0

⊺
= 𝐴𝑘 �̃�

(𝑝) ,# 𝑗
𝑘 , 𝑗 = 1 . . . 𝑀. (20)

The matrix 𝐴𝑘 at time 𝑘 can be derived as

�̂�𝑘 = �̃�
(𝑀)
𝑘+1 �̃�

(𝑀)†
𝑘 , (21)

and the output matrix 𝐶𝑘 as

�̂�𝑘 = 𝑶 ( 𝜉 )
𝑘

[1 : 𝑚, :] . (22)

Next section will present the approximation capabilities of these two algorithms with respect to their original

versions where data-correlation is not included.

III. Example 1: Dynamics of a point mass in a rotating tube

A. Model description

As an illustrative example for the TVERA/DC algorithm, let’s consider the dynamics of a point mass in a rotating

tube governed by a second order differential equation given by

𝛿 ¥𝑟 (𝑡) =
(
¤𝜃2 (𝑡) − 𝑘

𝑚

)
𝛿𝑟 (𝑡) + 𝑢(𝑡) + 𝑙 ¤𝜃2 (𝑡) (23)

where the new variable 𝛿𝑟 (𝑡) = 𝑟 (𝑡) − 𝑙 has been introduced, together with the definition of 𝑙, as the free length of the

spring (when no force is applied on it, i.e., Hooke’s Law applies as 𝐹𝑠 = −𝑘𝛿𝑟). The function 𝑢(𝑡) is the radial control
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Figure 1 Point mass in a rotating tube setup

force applied on the point mass, and the parameters 𝑘 and 𝑚 are the spring stiffness and the mass of the point mass of

interest. The time variation in this linear system is brought about by the profile of the angular velocity of the rotating

tube ¤𝜃 (𝑡). Choosing the origin of the coordinate system at the position 𝑟0 = 𝑙 (with no loss of generality), the second

order differential equation is given by

𝛿 ¥𝑟 (𝑡) =
(
¤𝜃2 (𝑡) − 𝑘

𝑚

)
𝛿𝑟 (𝑡) + 𝑢(𝑡) (24)

where the redefinition of the origin renders the system linear time varying without any extra forcing functions. In the

first order state space form (𝑥1 (𝑡) = 𝛿𝑟 (𝑡), 𝑥2 (𝑡) = 𝛿 ¤𝑟 (𝑡)), the equations can be written as


¤𝑥1 (𝑡)

¤𝑥2 (𝑡)

 =


0 1

¤𝜃2 (𝑡) − 𝑘

𝑚
0



𝑥1 (𝑡)

𝑥2 (𝑡)

 +

0

1

 𝑢(𝑡) = 𝐴(𝑡)𝒙(𝑡) + 𝐵(𝑡)𝑢(𝑡) (25)

together with the measurement equations


𝑦1 (𝑡)

𝑦2 (𝑡)

 =

1 0

0 1



𝑥1 (𝑡)

𝑥2 (𝑡)

 +

0

1

 𝑢(𝑡) (26)

To compare with the identified models, analytical discrete-time models were also generated by computing the state

transition matrix (equivalent 𝐴𝑘) and the convolution integrals (equivalent 𝐵𝑘 with a zero order hold assumption on the

inputs). Because the system matrices are time varying, matrix differential equations are given by

¤Φ(𝑡, 𝑡𝑘) = 𝐴(𝑡)Φ(𝑡, 𝑡𝑘), ¤Ψ(𝑡, 𝑡𝑘) = 𝐴(𝑡)Ψ(𝑡, 𝑡𝑘) + 𝐼, (27)
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∀ 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], with initial conditions

Φ(𝑡𝑘 , 𝑡𝑘) =


1 0

0 1

 , Ψ(𝑡𝑘 , 𝑡𝑘) =


0 0

0 0

 (28)

such that

𝐴𝑘 = Φ(𝑡𝑘+1, 𝑡𝑘), 𝐵𝑘 = Ψ(𝑡𝑘+1, 𝑡𝑘)𝐵, (29)

would represent the equivalent discrete-time varying system (true model). For the current investigation, the time

variation profile of ¤𝜃 (𝑡) = 3 sin( 12 𝑡), with the mass and stiffness of the system were chosen to be 𝑚 = 1 and 𝑘 = 10,

respectively.

B. Linear time-varying reduced-order model using TVERA/DC

The time interval of interest was held to be 40 seconds, with the discretization sampling frequency set to be 10 Hz.

The training is performed on 20 trajectories generated from 20 random initial conditions. A white noise of mean zero

and covariance 0.02𝐼𝑚 is added to the measurements. Testing of the identified models from both algorithms TVERA

and TVERA/DC is performed on 10 random trajectories, not included in the training set. Figure 2 shows the comparison

in identification performance. The approximation from TVERA degrades as time increases and while it is able to

preserve the frequency content, the amplitude of the identified signal is off after just a few seconds. On the other hand,

the signal reconstructed from the TVERA/DC procedure is able to match the true trajectory, up to the noise content.

Tables 1 and 2 present the RMS and absolute errors in prediction for models from the two algorithms.

Table 1 RMS Error for 10 trials

TVERA TVERA/DC

1.4 · 10−1 5.5 · 10−2

Table 2 Absolute Error for 10 trials

TVERA TVERA/DC

1.1 · 10−1 4.4 · 10−2
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Figure 2 Linear time-varying model identification performance on a testing trajectory

IV. Example 2: Model of a flexible space structure

A. Coupled Rigid and Flexible Body Model

For the purpose of obtaining output data for the various algorithms used in this paper, we consider the vibrations of

the spacecraft depicted in Figure 3. This spacecraft is a large, flexible structure whose vibrational modes we wish to

study. The structure is modeled as a rigid frame with a flexible membrane clamped within. It is readily apparent that the

dynamics of both a rigid and flexible body are well defined; however, this model is simply used as a basis of comparison

for the different data-driven algorithms introduced later in this paper. In reality, a similar spacecraft would not have such

simple dynamics.

The coupled equations of motion for this model are derived based on the Lagrangian formulation presented in [18],

[19] and are omitted from this paper for brevity’s sake. Only the resulting equation of motion related to the motion of

the membrane is necessary for this analysis. The reference frames and relevant vectors are depicted in Figure 3. The

black {𝒊, 𝒋 , �̂�} frame is the inertial-reference frame and the red {�̂�1, �̂�2, �̂�3} frame is the body-fixed frame. Now that the

basis vectors are defined, we move on to deriving the dynamics of the system.

1. Dynamics

The position vectors shown in Figure 3 are defined as

𝒓𝑅𝐵 = 𝑋 �̂�1 + 𝑌 �̂�2 + 𝑍 �̂�3 (30)

𝒓𝐹𝑙𝑒𝑥 = 𝒓𝑅𝐵 + 𝒓𝑀𝑒𝑚 (31)
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Ƹ𝒊

Ƹ𝒋

෡𝒌
෡𝒃1

෡𝒃𝟐

෡𝒃𝟑

Flexible 
Membrane

Rigid 
Frame

Figure 3 Spacecraft Model and Frame/Vector Definitions

𝒓𝐹𝑙𝑒𝑥 = 𝒓𝑅𝐵 + 𝑥 �̂�1 + 𝑦 �̂�2 + 𝜂�̂�3

= (𝑋 + 𝑥) �̂�1 + (𝑌 + 𝑦) �̂�2 + (𝑍 + 𝜂) �̂�3 (32)

where {𝑥, 𝑦, 𝜂} is the position of any membrane element relative to the rigid body’s center of mass written in body-fixed

coordinates, and {𝑋,𝑌, 𝑍} are the inertial components of the center of mass of the rigid frame also written in body-fixed

coordinates.

The full set of differential equations of motion for the spacecraft are omitted from this paper for brevity’s sake. For

the purposes of this paper, the only necessary equation of motion is

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[𝜌(¥𝒓𝐹𝑙𝑒𝑥) · 𝒃3 − 𝑃∇2𝜂]𝑑𝑥𝑑𝑦 =
∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

𝑓 𝑑𝑥𝑑𝑦 (33)

since our goal is to identify the dynamics of the membrane, not the rigid body dynamics. Note that 𝑃 is the tension in

the membrane, 𝜌 is the two-dimensional density of the membrane, and 𝑓 is an arbitrary distributed load. The integral

bounds 𝑎1/𝑎2 and 𝑏1/𝑏2 are the 𝑥 and 𝑦 bounds of the membrane relative to its geometric center, respectively. Note that

we are only considering displacement normal to the membrane’s surface, corresponding to the variable 𝜂. This meaning

there are no transverse vibrations in the �̂�1 and �̂�2 directions. In the next section, an approach to solving the above

partial differential equation is shown.
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2. Method of Weighted Residuals

The partial-differential equation shown in equation (33) details the motion of the model’s membrane and can be

solved numerically by converting it to a system of ordinary differential equations. This is achieved via the Galerkin

method of weighted residuals [20]. The displacement of the membrane, 𝜂(𝑥, 𝑦, 𝑡), is written as the double sum

𝜂(𝑥, 𝑦, 𝑡) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜙𝑖 𝑗 (𝑥, 𝑦)𝑞𝑖 𝑗 (𝑡) (34)

where 𝑛2 is the total number of assumed modes, 𝜙𝑖 𝑗 (𝑥, 𝑦) are basis functions to be chosen by the user, and 𝑞𝑖 𝑗 (𝑡) are

the corresponding modal amplitudes of 𝜙𝑖 𝑗 (𝑥, 𝑦). The basis functions for 𝜙𝑖 𝑗 (𝑥, 𝑦) are chosen to be the known basis

functions of a fully clamped membrane,

𝜙𝑖 𝑗 (𝑥, 𝑦) = sin
[
𝑖𝜋

𝑎
(𝑥 − 𝑎

2
)
]
sin

[
𝑗𝜋

𝑏
(𝑦 − 𝑏

2
)
]

𝑖, 𝑗 = 1, 2, ..., 𝑛 (35)

where 𝑎 and 𝑏 are the membrane’s width and height, respectively. For the rest of this paper, the double indices will be

dropped. Writing in terms of a single index avoids confusion. In the case of 𝑛 = 2, we refer to the modes [(1,1) (1,2)

(2,1) (2,2)] instead as modes [1 2 3 4], respectively. This meaning,

𝜙𝑖 (𝑥, 𝑦) := 𝜙 𝑗𝑘 (𝑥, 𝑦) where 𝑖 = 𝑛( 𝑗 − 1) + 𝑘

where now 𝜙𝑖 (𝑥, 𝑦) goes from 1 to 𝑛2. For the rest of this paper, 𝑛2 is denoted as 𝑁 and represents the total number of

assumed modes.

Inserting equation (35) into the expanded form of equation (33) leads to,∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
𝜌 ¤𝜈3𝜙 𝑗 + 𝜌𝜙𝑖 ¥𝑞𝑖𝜙 𝑗 + 𝜌 ¤𝜔1𝑦𝜙 𝑗 − 𝜌 ¤𝜔2𝑥𝜙 𝑗 − 𝜌𝜈1𝜔2𝜙 𝑗 + 𝜌(−𝜔22 − 𝜔

2
1) (𝜙𝑖𝑞𝑖𝜙 𝑗 )

+𝜌𝜔3𝜔2𝑦𝜙 𝑗 + 𝜌𝜔1𝜈2𝜙 𝑗 + 𝜌𝜔1𝜔3𝑥𝜙 𝑗 − 𝑃𝜙𝑥𝑥𝑖𝑞𝑖𝜙 𝑗 − 𝑃𝜙𝑦𝑦𝑖𝑞𝑖𝜙 𝑗 − 𝑓 𝜙 𝑗

]
𝑑𝑥𝑑𝑦 = 0

𝑖 = 1, 2, ..., 𝑁 𝑗 = 1, 2, ..., 𝑁

(36)

The derivation of the expression for ¥𝒓𝐹𝑙𝑒𝑥 is omitted from this paper. In equation (36), {𝜈1, 𝜈2, 𝜈3} are the inertial

velocities and {𝜔1, 𝜔2, 𝜔3} are the angular velocities. Both velocities are written in the body-fixed coordinate system.

Note that in equation (36), repeated indices, such as 𝜙𝑖 ¥𝑞𝑖 , represent the full summation of the function we are

approximating with our chosen basis functions, whereas 𝜙 𝑗 represents the basis functions being used as weighting

functions in the Galerkin method of weighted residuals. As a result of this, we now have a system of 𝑁 ordinary

differential equations instead of one partial differential equation. The system of equations defined in (36) can be
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rearranged into the following form:

𝑀 ¥𝒒 + 𝐾𝒒 = 𝐹 (37)

where 𝒒 ∈ R𝑁×1 is a vector of the modal amplitudes. 𝑀 , 𝐾 , and 𝐹 are defined as

𝑀𝑖 𝑗 =

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
𝜌𝜙𝑖𝜙 𝑗

]
𝑑𝑥𝑑𝑦 (38)

𝐾𝑖 𝑗 =

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
− 𝜌(𝜔21 + 𝜔

2
2)𝜙 𝑗 − 𝑃(𝜙𝑥𝑥𝑖 + 𝜙𝑦𝑦𝑖 )𝜙 𝑗

]
𝑑𝑥𝑑𝑦 (39)

𝐹𝑗 =

∫ 𝑏2

𝑏1

∫ 𝑎2

𝑎1

[
𝑓 + 𝜌(− ¤𝜈3 − ¤𝜔1𝑦 + ¤𝜔2𝑥 + 𝜈1𝜔2 − 𝜔3𝜔2𝑦 − 𝜔1𝜈2 − 𝜔1𝜔3𝑥)

]
𝜙 𝑗𝑑𝑥𝑑𝑦 (40)

where 𝑀 ∈ R𝑁×𝑁 , 𝐾 ∈ R𝑁×𝑁 , and 𝐹 ∈ R𝑁×1. Here, 𝑖 and 𝑗 represent the (𝑖𝑡ℎ, 𝑗 𝑡ℎ) element of each matrix and both

go from 1 to 𝑁 . Note that there is no repeated index here so there is no summation in these definitions. In the next

section, we will utilize the mass-spring form of equation (37) to obtain a state-space model for our system.

3. State Space Model

By assuming free vibrations (𝐹𝑗 = 0), equation (37) can be written as a first-order, continuous, time-varying, linear

system of the form:

¤𝒙 = 𝐴𝑐 (𝑡)𝒙 (41)

𝒚 = 𝐶𝒙 (42)

where 𝒙 ∈ R2𝑁×1 is the state vector of time-varying modal amplitudes and their time derivatives and 𝒚 ∈ R𝑚×1 is the

acceleration output vector. The system matrices are written as,

𝐴𝑐 =


𝑂𝑁×𝑁 𝐼𝑁×𝑁

−𝑀−1𝐾 (𝑡) 𝑂𝑁×𝑁

 (43)

𝐶 =

[
−𝐶1𝑀−1𝐾 (𝑡) 0𝑚𝑥𝑁

]
, 𝐶1 =



𝜙1 (𝑥1, 𝑦1) . . . 𝜙𝑁 (𝑥1, 𝑦1)
...

. . .
...

𝜙1 (𝑥𝑚, 𝑦𝑚) . . . 𝜙𝑁 (𝑥𝑚, 𝑦𝑚)


(44)

where 𝐼 and 𝑂 are the identity and zero matrices, respectively. 𝑀 and 𝐾 are the mass and stiffness matrices defined in

equations (38) and (39), respectively. Note that the only time-varying aspect of the system comes from the 𝜔21 +𝜔
2
2 term
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in 𝐾 (assuming membrane parameters are constant). The output for this system is the acceleration of the membrane at

𝑚 locations; representing 𝑚 sensors distributed across the membrane. This is visualized in Figure 4 with a top-down

view of the membrane. The black dashed line represents the border of the membrane, the black circle the geometric

center, and the red dots the accelerometers.

Figure 4 Example of Sensor Placement

For the results in this paper, the first four functions of 𝜙𝑖 𝑗 (𝑥, 𝑦), defined in equation (35), were chosen as the basis

functions (i.e. 𝑖 = 𝑗 = 2). This implies 𝐴𝑐 ∈ R8×8. We can then discretize equations Eq. (41) and Eq. (42) as

𝒙𝑘+1 = 𝐴𝑘𝒙𝑘 (45)

𝒚𝑘 = 𝐶𝑘𝒙𝑘 (46)

where 𝐴𝑘 is the state-transition matrix between time steps,Φ(𝑘 + 1, 𝑘), and 𝐶𝑘 = 𝐶. We now have our reference discrete

state-space model we wish to identify via data-driven modeling. Now, we must utilize this model to obtain output data.

D
ow

nl
oa

de
d 

by
 D

am
ie

n 
G

ue
ho

 o
n 

Ju
ly

 2
4,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

20
72

 



4. Initial Conditions

In order to correctly identify all the dynamics of our derived model, we need to ensure that all modes are excited in

our output data. To do this, we choose the initial conditions of our state to be linear combinations of all four assumed

flexible body modes, which are the columns of the eigenvector matrix Φ =
[
𝝓1, 𝝓2, . . . , 𝝓𝑖 , . . . , 𝝓2𝑁

]
obtained from

the characteristic equation |𝐴 − 𝜆𝑖 | 𝜙𝑖 . The initial conditions are chosen to be

𝒙0𝑖 = 𝑟1 (𝝓1 + 𝝓2) + 𝑟2 (𝝓3 + 𝝓4) + 𝑟3 (𝝓5 + 𝝓6) + 𝑟4 (𝝓7 + 𝝓8) 𝑖 = 1, 2, . . . , 𝐾 (47)

where 𝑟1 through 𝑟4 are random scalars drawn from a normal distribution and 𝐾 is chosen by the user to ensure enough

output data is obtained to capture the order of the system. In the absence of a real input, the initial conditions act as a

sort of input instead.

B. Data acquisition and setup description

To obtain the output data for the system, the continuous state-space model defined in Section IV.A.3 was numerically

integrated with MATLAB’s ode45 function with the initial conditions defined in Section IV.A.4. The following table

details the parameter values used in simulation. Note that the two different values of 𝜔1/𝜔2 correspond to two separate

cases of a time-invariant and time-varying system. All other parameters remain the same across the two.

N a b 𝜌 P 𝜔1/𝜔2 𝜔1/𝜔2

4 20 m 20 m 5 𝑘𝑔

𝑚2
200 N 0.5 𝑟𝑎𝑑

𝑠
0.1sin(t) + 0.3 𝑟𝑎𝑑

𝑠

As for the sensor error, the noise was chosen to have a normal distribution with a standard deviation equal to 5% of

the max acceleration the true-system experienced (different for each initial condition case). The different levels of noise

will be used for comparison of the different algorithms.

C. Linear time-invariant reduced-order model using ERA/DC

First, linear models are derived from data using the algorithms outlined in the previous section. A hundred random

trajectories are considered for the identification, with testing performed on an additional set of 20 trajectories, different

from training. Figure 5 shows the performance of the two algorithms on those testing trajectories (average on the 20

trajectories of the testing set). The noise level is indicated as a reference and serves as a lower bound for the identification

error. By carefully selecting identification parameters, the eigensystem realization algorithm with data-correlation

(ERA/DC) performs up to one order of magnitude better than its ERA counterpart. While non-linearities and noise

(rogue sensor measurements here) degrade the approximation capabilities of the ERA, the ERA/DC is less sensitive to

noise in the data thanks to correlation calculations. While the relative error induced by the identified model from ERA

grows over time and is impacted by measurement noise, the identified model from ERA/DC yields significantly less
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Figure 5 Average linear time-invariant models identification performances on 20 testing trajectories

approximation error and sometimes correctly approximates the response down to - a;most - the non-compressible noise

level. The average relative error for the 20 test trials for ERA is at 1.1 · 100 while the error from ERA/DC is 7.4 · 10−2,

using the same data set. Models for different of parameter 𝜏 have been generated and average errors for the 20 test

trajectories are presented in Table 3. This confirms that the bias terms affecting the ERA when measurement noise is

present can, in principle, be omitted in the ERA/DC by properly choosing the integer 𝜏.
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Table 3 Average relative error for the 20 test trials

Value of parameter 𝜏 Error in approximation from ERA/DC

𝜏 = 1 1.3 · 100

𝜏 = 2 9.8 · 10−1

𝜏 = 3 8.1 · 10−1

𝜏 = 4 5.8 · 10−1

𝜏 = 5 2.5 · 10−1

𝜏 = 6 9.3 · 10−2

𝜏 = 7 7.4 · 10−2

As mentioned earlier, the main difficulty in linear system identification applications stems from the interplay of noise

and unmodeled dynamics and most systems are only linear to a first approximation. Since this immediately limits the

application of the results obtained by linear system identification algorithms, the time-varying Eigensystem Realization

Algorithm with data-correlation is applied to the same data set. Figure 6 shows the performance of the TVERA/DC

algorithm to reproduce the system response in presence of noise, where the relative identification error is up to the noise

level.
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Figure 6 Average linear time-varying models identification performances on 20 testing trajectories

V. Conclusion
Based on a time-invariant state-space realization method, this paper has introduced a data-correlation approach to

the time-varying eigensystem realization algorithm (TVERA/DC). It involves a fit to the output auto-correlation and

cross-correlations over a defined number of lag values and allows one to temper the effect of noise in the data. Both

time-invariant and time-varying versions have been proven successful to reproduce the response of dynamical systems

from rogue sensor measurements. The first example shows that noise can affect a basic time-varying identification

procedure (TVERA) and can be corrected using TVERA/DC. The second example, of higher dimension, shows that

both time-invariant and time-varying models can benefit from data correlation.
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