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Abstract

This dissertation advances the understanding of data-driven modeling and delivers tools to pursue the
ambition of complete unsupervised identification of dynamical systems.

From measured data only, the proposed framework consists of a series of modules to derive accurate
mathematical models for the state prediction of a wide range of linear and nonlinear dynamical systems.
Identified models are constructed to be of low complexity and amenable for analysis and control. This
developed framework provides a unified mathematical structure for the identification of nonlinear systems
based on the Koopman operator.

A main contribution of this dissertation is to introduce the concept of time-varying Koopman operator
for accurate modeling of dynamical systems in a given domain around a reference trajectory. Subspace
identification methods coupled with sparse approximation techniques deliver accurate models both in
the continuous and discrete time domains. This allows for perfect reconstruction of several classes
of nonlinear dynamical systems, from the chaotic behavior of the Lorenz oscillator to identifying the
Newton’s law of gravitation.

The connection between the Koopman operator and higher-order state transition matrices (STMs)
is explicitly discussed. It is shown that subspace methods based on the Koopman operator are able
to accurately identify the linear time varying model for the propagation of higher order STMs when
polynomial basis are used as lifting functions.

Such algorithms are validated on a wide range of nonlinear dynamical systems of varying complexity
and are proven to be very effective on nonlinear systems of higher dimension where traditional methods
either fail or perform poorly. Applications include model-order reduction in hypersonic aerothermoelas-
ticity and reduced-order dynamics in a high-dimensional finite-element model of the Von Karman Beam.
Numerical simulation results confirm better prediction accuracy by several orders of magnitude using
this framework.

Additionally, a major objective of this research is to enhance the field of data-driven uncertainty
quantification for nonlinear dynamical systems. Uncertainty propagation through nonlinear dynamics is
computationally expensive. Conventional approaches focus on finding a reduced order model to alleviate
the computational complexity associated with the uncertainty propagation algorithms. This dissertation
exploits the fact that the moment propagation equations form a linear time-varying (LTV) system
and use system theory to identify this LTV system from data only. By estimating and propagating
higher-order moments of an initial probability density function, two new approaches are presented and
compared to analytical and quadrature-based methods for estimating the uncertainty associated with a
system’s states. In all test cases considered in this dissertation, a newly-introduced indirect method
using a time-varying subspace identification technique jointly with a quadrature method achieved the
best results.

This dissertation also extends the Koopman operator theoretic framework for controlled dynamical
systems and offers a global overview of bilinear system identification techniques as well as perspectives and
advances for bilinear system identification. Nonlinear dynamics with a control action are approximated
as a bilinear system in a higher-dimensional space, leading to increased accuracy in the prediction of the
system’s response. In the same context, a data-driven parameter sensitivity method is developed using
bilinear system identification algorithms.

Finally, this dissertation investigates new ways to alleviate the effect of noise in the data, leading to
new algorithms with data-correlations and rank optimization for optimal subspace identification.
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Chapter 1
Introduction

1.1 The Field of Data-Driven System ldentification

The general purpose of data-driven system identification is to invent methods and algorithms to develop
or improve a mathematical representation of an unknown dynamical process using data. The word
system relates to any dynamical process that evolves with time and can represent a real physical process
or a simulated experiment. In the case of a real system, there is a need for accurate data-driven system
identification when the underlying dynamical process is unknown or if state-of-the-art physics-based
models are not able to capture the relevant dynamics to explain observable data. History as shown that
the task of characterizing the dynamics of complex structures is a difficult one, especially in challenging
environments. When the system refers to a simulated experiment, the need for system identification
is paramount as very few high-fidelity simulations are amenable for analysis and control. Usually of
high complexity (in terms of fidelity, dimensionality), these systems require reduced-order modeling and
subspace identification to design strategies for analysis and control. Figure 1.1 provides a few examples

of dynamical systems.

The field of system identification has been an important discipline within the field of guidance, naviga-
tion and control (GNC), the automatic control area, structural engineering, reduced-order modeling and
model testing [1,2]. Over the past six decades, the field of system identification has provided multiple
tools for design, analysis and control of engineering systems. Earlier efforts have concentrated on linear
system identification with a special emphasis on identifying the minimal state-space representation to
define the subspace over which the system dynamics evolves. State-space models are particularly suitable
since they lend themselves to linear algebra techniques, robust numerical simulation, and modern control
design methods. Among the first were the works of Gilbert and Kalman [3,4], which introduced the
important principles of realization theory in terms of the concepts of controllability and observability.
They first introduced the concept of state-variable equations which realize the external description via an
equivalent internal description of a dynamical system. Whether the analyst or the engineer is interested
in the synthesis or the analysis, these equations are an efficient and useful model with which one can

proceed to further analysis and optimization.

The problem of realization for linear time invariant systems was first stated by Gilbert [3] who gave
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Figure 1.1: A few examples of dynamical processes

an algorithm for computing the map transfer function matrix to state-variable differential equations. A
second algorithm for the same problem was given at the same time by Kalman [5] using the theory of
controllability and observability and requiring linear algebra-type computation. A few years later, Ho
and Kalman approached this problem from a new viewpoint. They showed that the minimum realization
problem is equivalent to a representation problem involving a sequence of real matrices known as Markov
parameters (pulse response samples). Minimum realization means a model with the smallest state-space
dimension among all possible system realizations that have the same input-output relations. Although
several techniques of minimum realization are available in the literature, formal direct application to

modal parameter identification for flexible structures was not addressed until 1984.

Building upon initial work by Gilbert [3] and Kalman [4,5], several methods have been developed
to identify most observable and controllable subspaces of the system from given input-output (I/0)
data [6-16]. Subspace methods for system identification such as the Eigensystem Realization Algorithm
(ERA) introduced in 1985 [13] were developed for modal parameter identification and model reduction
of dynamic systems using test data. The ERA was originally introduced to identify the system matrices
from an impulse response or initial condition response but a few years after the introduction of the
ERA, the Observer/Kalman Identification Algorithm (OKID) was introduced to generalize the ERA
for generic input-output data. It is formulated entirely in the time-domain and computes the Markov
parameters of a linear system, from which the state-space model and a corresponding observer are

determined simultaneously [15,17-19]. Similar subspace methods have been re-discovered later in 2010



in the field of fluid mechanics, like Dynamic Mode Decomposition (DMD) and its variants [20-23]. ERA
and DMD have been useful for extracting spatial-temporal coherent structures from data, and happen

to be very similar in their implementation [21].

State-space realizations methods have been shown to work very well for numerical simulations, and
for experimental results from structures with modes that are well separated in frequency. The popularity
of these methods lies in the simplicity with which the model order can be selected. In general, linear
system identification methods are able to capture the main physics as well as the subspace in which
the dynamics is evolving. However, linear methods are unable to capture nonlinearities and limitations
appear when these state-space methods are applied to complex structures or when collected data include
too much noise. In those cases, a state-space model does not necessarily converge and using more data
in the identification process may not necessarily result in a better approximation as the computations
become unfeasible. In addition, the effect of noise in the data has not been studied in the literature
extensively. Some techniques have been developed involving data correlation to minimize the influence
of noise during the identification process, but no practical linear identification framework has been

developed to be robust enough in the presence of noise.

As a step towards system identification of nonlinear dynamical systems, several efforts have been
made to develop time-varying models and to generalize subspace system identification algorithms like
the ERA to the case of time-varying systems. Earliest efforts in the development of methods for
linear time-varying systems involved recursive and fast implementations of the time invariant methods
by exploring structural properties of the input/output realizations. Subsequently, significant results
were obtained by Shokoohi and Silverman [24] and Dewilde and Van der Veen [25] that generalized
several concepts in the classical linear time invariant system theory consistently. The idea of repeated
experiments has been introduced [26,27] and presented as practical methods to realize the conceptual
state space model identification strategies. From a perspective of generalizing the ERA to the case of
time-varying systems, Majji, Juang and Junkins [28,29] developed a time-varying version of ERA. In
parallel, using an asymptotically stable observer (to remedy the problem of unbounded growth in the
number of experiments), they developed the time-varying observer /Kalman-filter system identification
(TVOKID) to work with TVERA.

In contrast to linear system identification, nonlinear system identification problems are still treated
mostly on a system-by-system basis with popular methods being Volterra series models [2, 30, 31],
global-local learning [32,33] and neural network (NN) models [34]. The main essence of nonlinear system
identification methods has been to expand the nonlinear unknown function as a linear combination of
basis functions or kernels and their amplitude. Many of these methods differ in their choice of basis
functions and their learning methodology. Methods like Volterra series approximation utilize Volterra
kernels to provide a global approximation of the underlying dynamics while global-local approximation
methods merge various local approximations valid in a local region to find a global approximation of the
underlying dynamics [32]. More prevalent machine learning methods such as multi-layered NNs (also
known as deep NNs) use a composition of nonlinear transformations to approximate the unknown I/0
mapping. Each layer of the NN corresponds to one nonlinear transformation which is represented by a

linear combination of fixed bases such as sigmoid functions known as neurons or perceptrons. According



to Cover [35,36] and Kolmogorov’s theorems, multi-layer NNs can serve as universal approximators but,
in actuality, they offer no guarantee on accuracy in practice for a reasonable dimensionality (global and
distributed approximation can be at the expense of high parametric dimensionality). Furthermore, the
learning of parameters for multi-layer NN often involves nonlinear optimization due to composition of
multiple nonlinear transformations. All of these methods focus on improving approximation accuracy by
increasing the number of parameters of the models in a brute force manner through an increase in the
number of basis functions, local models and/or layers of the network. A key issue arises where, if one fixes
the architecture and basis functions, a given method’s ability to approximate a given system’s behavior
can be deduced only after the learning process is over. Adaptation of the approximation architecture,
not simply adjusting weights in a fixed architecture, has emerged as the key to convergence reliability
and accuracy. Therefore, approximation capabilities of state-of-the-art machine learning approaches
(particularly deep learning) in capturing the underlying physical characteristics of a dynamical system
remain poorly understood due to the fact that these algorithms are unable to learn underlying physical

features (or characteristics) of the system.

Additionally, despite the abundance of experimental data and the development of new technologies,
the ability of these algorithms to extrapolate a general physical model and find governing equations
from data has been very limited, especially beyond the scope of the domain where they were sampled
and constructed. The major challenge in nonlinear system identification comes with the number of basis
functions (or nodes) needed to extract relevant features from I/0O data. A small number of units may
not be enough to capture a given system’s complex I/O mapping and, alternatively, a large number
of units may overfit the data (and fit the noise) and may not generalize the behavior. As science
attempts to understand ever more complex systems, and as data sets become larger and more difficult
to process, new architectures and methods based on artificial intelligence (AI) will need to generate
deep insights based on physics, mathematics, and context-aware representations that succinctly capture

relevant dynamics and behaviors of complex systems under study and be able to generalize across domains.

More recently, the dynamical system discovery problem from the perspective of sparse regression and
compressed sensing has been addressed by leveraging the fact that most physical systems have only a few
relevant terms that define the dynamics, making the governing equations sparse in a high-dimensional
nonlinear function space [33,37—40]. Even more recently, advances in compressed sensing and sparse
regression have been exploited to learn appropriate basis functions from an over-complete dictionary of
basis functions without performing an exhaustive search [39-41]. Although this sparse representation
through the iterative least-squares problem guarantees the balance between model complexity and
accuracy, the resulting algorithm is susceptible to noise in state measurement. In [42,43], an approach
named subsampling-based threshold sparse Bayesian regression (Subtsbr) is presented to accomodate
high noise in the measurments for states and state derivatives and a Galerkin formulation that involves
projecting the errors on a set of basis functions known as test functions is considered in [44] to avoid
estimating time derivatives of the state variables. While this formulation provides better results in the
presence of noise, the choice of test functions severely affects the performance of the algorithm. Alternate
formulations [45] consider a direct integral form of the dynamics for first-order systems in conjunction
with a regularized ¢, optimization problem to find the appropriate basis functions to approximate the

unknown system dynamics.



In a similar fashion, recent advances in nonlinear system identification have used the Koopman
operator-theoretic approach to obtain precise predictions of a nonlinear dynamical system as the output
of a truncated linear dynamical system. The Koopman analysis complements more standard geomet-
ric [46] and probabilistic approaches by governing the evolution of scalar observables of the system state,
lifting the nonlinear dynamics into a higher-dimensional space where the evolution of the flow of the
system can be linear, hence trading dimensionality for linearity [47,48]. More precisely, a nonlinear
dynamical system associated with a Hamiltonian flow can be analyzed with an infinite dimensional
linear operator on the Hilbert space of observable functions. This approach is no different than other
nonlinear system identification techniques: it relies on a set of basis functions (or measurement functions
as found in the literature) to represent the dynamics of the system. Many efforts have focused on
adapting the architecture of the network by selecting appropriate models from a pre-defined dictionary
of models [37,38,49-51] and advances in compressed sensing and sparse regression have been exploited to
select appropriate basis functions without performing an exhaustive search [39-45,52,53|. The key aspect
of the Koopman operator approach is to rearrange the dynamics using these measurement functions,
hence obtaining predictions of a nonlinear dynamical system as the output of a linear dynamical system.
While the core challenge of the Koopman operator-theoretic approach is to specify (directly or indirectly
through decomposition) this Hilbert space of measurement functions of the state of the system, the
theory has been applied for uncontrolled [54,55] and controlled systems [56,57] with promising results
using popular subspace realization methods such as ERA or DMD and its extensions [58]. The resulting
linear operator is a local approximator of the nonlinear dynamical system valid in the neighborhood of a
nominal point and the domain of validity of this local linear approximation improves as the dimension
of the lifting space is increased (i.e. more basis functions). Therefore, this time-invariant operator

represents the amplitude of the modes selected to characterize the dynamics.

At present, the majority of methods available in the literature for nonlinear system identification
present several shortcomings. For nonlinear dynamics evolving in regimes near equilibrium points, linear
identification methods based on subspace methods are found to be effective for short-term prediction
but rapidly collapse for systems with higher degrees of nonlinearity, operating farther away from the
equilibrium point or for long-term propagation. While some approaches based on the Koopman operator
have the potential to mitigate some of these issues, Koopman-based techniques presented in the literature
are only suited for low-dimensionality uncontrolled problems. Additionally, the vast majority of these
methods assume full state information which does not portray the reality for real engineering applications.
Even though Al-based methods are able to handle high-dimension I/O mappings, deep neural networks
are usually unable to learn and capture the underlying physical features of the system, making them
inoperative for analysis and control. More importantly, Al algorithms or other identification methods
whose treatment requires nonlinear optimization do not identify a subspace over which the dominant
dynamics evolve. Also, presence of noise in the experimental data is problem-dependent and, since system
uncertainties and measurement noise are unknown, system identification algorithms should be able to
reduce their impact during the identification process. Hence, one of the primary contributions of this dis-
sertation is to propose methods and algorithms to alleviate some of these shortcomings and offer a unified
and robust data-driven framework for reduced-order modeling and system identification that combines

the latest techniques in time-varying subspace realization methods, sparse representation and embeddings.



A major objective of this research is to utilize this unified data-driven framework to enhance the
field of data-driven uncertainty quantification for nonlinear dynamical systems. Uncertainty propagation
through nonlinear dynamics is computationally expensive and conventional approaches focus on find-
ing a reduced order model to alleviate the computational complexity associated with the uncertainty
propagation algorithms. Quantitative measures to accommodate uncertainties (in control as well as
state variables) from a designed trajectory are rigorous and exact for linear systems but nonlinearities in
the representation of the dynamics lead to significant challenges in estimating uncertainties associated
with the state vector. Approximate measures to quantify uncertainties in the real world are poor and
can lead to significant compromises in the overall performance and safety. This dissertation exploits
the fact that the moment propagation equations form a linear time-varying (LTV) system and use
system theory to identify this LTV system from data only. By estimating and propagating higher-order
moments of an initial probability density function, two new approaches are presented and compared to

analytical and quadrature-based methods for estimating the uncertainty associated with a system’s states.

Shifting from autonomous systems to controlled systems, nonlinear dynamics with an external
control action represented in a lifted space are not linear anymore, nor are control affine in a Koopman
framework. Approximating the controlled nonlinear system by a linear system with affine control would
yield poor results. Some previous attempts in this direction showed very mixed results [56,57] and the
theory around the Koopman operator for controlled system is not mature enough. Other research works
have considered introducing a control input to model chaos dynamics in certain settings [59] but only for
autonomous nonlinear systems. Secondly, one could argue that a new type of lifting functions could be
introduced, function of both the state and the control vectors. This would lead to identify a Koopman
operator that would not only predict future values of the state but also future values of the control input,
which is not desirable. Instead, this dissertation introduces the concept of bilinear Koopman operator.
Bilinear state-space model identification is of interest for two main reasons. Some physical systems are
inherently bilinear and bilinear models of high dimension can approximate a broad class of nonlinear
systems. Nevertheless, no well-established technique for bilinear system identification is available yet,
even less in the context of Koopman. The aim of this dissertation is to offer some perspectives and
advances for bilinear system identification and sensitivity analysis, working towards a bilinear Koopman

operator.

1.2 Research Objectives

The overarching goal of this dissertation is to consolidate the complex field of system identification by
combining popular time invariant or time-varying identification methods with newly developed nonlinear

sparse identification techniques. This dissertation will focus on the following specific objectives:

1. The first objective is to reconnect major subspace time-invariant and time-varying identification
methods with the Koopman operator theoretic framework and offer a unified system identification

structure for autonomous systems.

2. The second objective is to develop a computationally efficient method to identify a Koopman

operator leveraging filtering methods and sparse approximation techniques.
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3. The third objective is to extend time-varying subspace system identification methods for the

identification of a time-varying Koopman operator of arbitrary order.

4. The fourth objective is to demonstrate the utility and performance of this framework through
rigorous analysis and simulations for complex and high-dimensional nonlinear systems, where

traditional methods either fail or perform poorly.

5. The fifth objective is to utilize this framework to enhance uncertainty quantification for nonlinear

dynamical systems.

6. The sixth objective is to extend the Koopman operator theoretic framework for controlled dynamical

systems and to analyze parameter sensitivity using bilinear system identification techniques.
7. The seventh and final objective is to introduce new methods for mitigating noise in the data.

The core of this dissertation research is to lay the foundation for a computationally tractable
framework for enhanced data-driven system identification of dynamical systems. Broadly speaking,
the developed tools are anticipated to advance the state-of-the-art in the general area of data-driven
linear time-invariant and time-varying system identification, sparse system identification, data-driven
uncertainty quantification, bilinear system identification and offering tools to mitigate noise in the data
for any engineering application. The chapters in this dissertation are structured in the following manner.

Chapter 2 offers a global view of the system identification problem and provides a background for
linear system identification that will be used throughout the dissertation and employed to develop
the basis of the identification framework in the next chapters. More importantly, this chapter relates
the system identification problem with the Koopman operator theoretic framework, and defines the
mathematical background for a continuous and discrete-time Koopman operator.

Chapter 3 presents a generalized approach to identify the structure of governing nonlinear equations
of motion from the time history of state variables and control functions. An integral form involving a
low-pass filter in conjunction with sparse approximation tools is used to find a parsimonious model for
underlying true dynamics from noisy measurement data.

Chapter 4 introduces the concept of time-varying Koopman operator to predict the flow of a nonlinear
dynamical system. The Koopman operator provides a linear prediction model for nonlinear systems in a
lifted space of infinite dimension. An extension of time-invariant subspace realization methods known as
the time-varying Eigensystem Realization Algorithm (TVERA) is used to derive a finite dimensional
approximation of the infinite dimensional Koopman operator at each time step.

Chapter 5 considers two challenging high-dimensional nonlinear systems and applies the methods
previously developed to come up with a reduced-order model suitable for analysis.

Chapter 6 outlines different methods to estimate the moments of the probability density function
associated with the dynamical states of a system. Two new approaches (one direct and one indirect) based
on the previously developed framework are presented and compared to analytical and quadrature-based
methods.

Chapter 7 introduces the concept of bilinear Koopman operator for controlled systems and offers
a global overview of bilinear system identification techniques as well as perspectives and advances for
bilinear system identification.

Chapter 8 investigates techniques to mitigate noise in the data for more accurate and reliable

data-driven identification algorithms. It introduces a data-correlation approach to the time-varying
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eigensystem realization algorithm (TVERA/DC) but also a method to minimize the nuclear norm of
the Hankel matrix as a way to offer an interesting alternative as a heuristic for low-rank approximation
problems where a clear-cut criterion for model selection cannot be deduced from the SVD.

Chapter 9 summarizes the contributions of this dissertation, comments on open areas for future

research and provides concluding remarks.



Chapter 2
The System ldentification Prob-
lem

2.1 Introduction

This dissertation is aimed at providing a strong mathematical background and analytical tools to
participate in the growing field of data-driven system identification. The accuracy of the mathematical
models directly affects the accuracy of the system capabilities and performance. As a consequence, there
is a great demand for the development of advanced modeling algorithms that can adequately represent
a system behavior. However, different system processes have their own unique characteristics which
they do not share with other structurally different systems. Obviously the mathematical structure
of engineering models are very diverse; they can be simple algebraic models, may involve differential,
integral or difference equations or may be a hybrid of these. Further, many different factors, like intended
use of the model, problem dimensionality, quality of the measurement data, offline or online learning, etc.,
will have an impact on the choice of model architecture [32]. For the simplest input-output relationship,

the mapping from the input to the output (I/O mapping) is
y = D(u) (2.1)

where y € R™ is the vector of measurable quantities and u € R" is the control action (or bifurcation
parameter). D simply represents the overall dynamical process. Given a time-history of u and y,
the system identification problem reduces to the estimation of a dynamical model for D. In other
words, the role of system identification is to apply reverse engineering to input-output (I/O) data
to characterize a physical system with a mathematical model. Since the initial efforts, the system
identification community has sought a reliable methodology to derive a mathematical model capturing
the main characteristics of dynamical systems. The most mature part of the theory deals with linear
systems using well-established techniques of linear algebra and the theory of ordinary differential or
difference equations. In contrast, nonlinear system identification problems are still treated mostly on
a system-by-system basis. Over the past few decades, artificial neural networks (ANN) have emerged
as a powerful set of tools in pattern classification, time series analysis, signal processing, dynamical

system modeling and control. The popularity of ANNs can be attributed to the fact that these network



models are frequently able to learn behavior when traditional modeling is very difficult to generalize.
However, as discussed in the previous chapter, approximation capabilities of state-of-the-art machine
learning approaches (particularly deep learning) in capturing the underlying physical characteristics of a
dynamical system remain poorly understood because these algorithms are unable to learn the underlying
physical features (or characteristics) of the system. More importantly, ANNs fail to provide a physical
interpretable space over which the dynamics evolve. The I/0 relationship described in Eq. (2.1) can be

written in terms of that subspace of dimension n:

z(t) = f(t,z,u) (2.2a)
y(t) = h(t,z,u) (2.2b)

where t € R, ¢ € X C R” is the state of the system (also usually the unknown minimal set of variables
needed to describe the evolution of the system), f : R x X x U — R™ is a function of a vector field that
describes how the system changes at a given state in time. Coming up with a model that is able to
approximate Eq. (2.2a) and Eq. (2.2b), as well as the dimension of the state of the system n, is at the
heart of system identification and is considered the most challenging part. Figure 2.1 presents a typical
overview of the procedure for the identification of an unknown system from data only. Basically, the

procedure involves five key steps including:
1. Simulations and/or experiments;
2. Data collection and features extraction;
3. Dynamic system identification and reduced-order modeling;
4. Observer identification and controller design;
5. Verification and testing.

The mathematical model thus obtained can then be used for analysis (performance evaluation, prediction,
optimization, uncertainty quantification, sensitivity analysis) and control. At the heart of the procedure
is the system identification step that involves a series of algorithms and methods to derive a mathematical
model from measured data. When the system is linear, i.e. f and g are linear functions of « and u in
Eq. (2.2a) and Eq. (2.2b), linear subspace identification methods can be employed. The theory around
linear system identification is very well developed and the next section will provide a brief overview of
some notorious algorithms in the field and equip the reader with some common notations and definitions

to help support the work introduced in the next chapters.

2.2 Linear Subspace Identification

The goal in this section is not to provide a comprehensive list of methods and algorithms used for
the identification of linear systems but rather to highlight crucial concepts needed to understand the
fundamentals of time-invariant linear subspace system identification. First, let us start by providing
a quick synopsis on time-invariant linear subspace methods. Many algorithms have been established,
some of them deterministic in nature, i.e. without considering noise in the measured data, and others

stochastic, i.e. with formulations minimizing the noise uncertainty in the identification. During the 90s,
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Figure 2.1: Overview of the data-driven system identification framework

building upon initial work by Gilbert and Kalman, several methods have been developed to identify most
observable and controllable subspace of the system from given input-output (I/O) data [1,6,8,13-19].
Under the interaction of structure and control disciplines, the Eigensystem Realization Algorithm
(ERA) [13] was developed for modal parameter identification and model reduction of dynamic systems
using test data. The algorithm presents a unified framework for modal parameter identification based on
the Markov parameters (i.e., pulse response) making it possible to construct a Hankel matrix as the basis
for the realization of a discrete-time state-space model. A few years later at NASA, Juang developed a
method for simultaneously identify a linear state-space model and the associated Kalman filter from
noisy input-output measurements. Known as the Observer/Kalman Identification Algorithm (OKID)
and formulated entirely in the time-domain, it computes the Markov parameters of a linear system,
from which the state-space model and a corresponding observer are determined simultaneously [15,18].
The method relies on an observer equation to compress the dynamics of the system and efficiently
estimate the associated system parameters (Markov parameters). In conjunction with the ERA; the
method provides simultaneously both the Markov parameters and the Kalman gain, extracting all the
possible information present in the data. The observer at the core of the method was proven to be the

steady-state Kalman filter corresponding to the system to be identified.

2.2.1 Time-Domain State-Space Models

The equations of motion for a finite-dimensional linear-dynamic system are a set of n first-order differential

equations (Eq. (2.3a)) along with an initial condition @(tg). The n-dimensional state x(t) is most often
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related to the output through the measurement equation Eq. (2.3b).

z(t) = Acx(t) + Bou(t), (2.3a)
y(t) = Cx(t) + Du(t). (2.3b)

The system of equations Eq. (2.3) constitutes a continuous-time state-space model of a dynamical

system. Given the initial condition x(tg) at some ¢t = g, solving for x(t) for t > ¢ yields

t

x(t) = e 10g(ty) + / eAet=T) B u(r)dr. (2.4)
to

Without loss of generality, we will consider that t5 = 0. A close approximation of a continuous-time

model can be obtained by a discrete one provided that the sampling rate is sufficiently high. A linear

discrete system is most commonly described by an nt* order difference equation, the weighting sequence,

or a discrete state-space model. Let At be a constant time interval and f = 1/At the sampling rate.

Continuous versions of the A and B matrices are

A = eAeAt, (2.5a)
At
B= / eTdr B, (2.5b)
0
Tp11 = x((k+ 1)At), (2.5¢)
ur, = u(kAt). (2.5d)

The discrete-time matrices A and B in Egs (2.5a) and (2.5b) may be computed by the following series

expansions:
A=ttt =% A, (2.6a)
i=0
2 R +1
B = TdrB, = AL (AL B.. 2.6b
f) i = [ (2.60)

A sufficient condition for these series expansions to converge is that the continuous-time state matrix A,
is asymptotically stable in the sense that the real parts of all its eigenvalues are negative. If none of the

eigenvalues of A. are zero, the discrete-time matrix B may also be computed by
B=[A-I]A'B.. (2.7)
Therefore, a discrete-time invariant linear system can be represented by

Tryi1 = Axy + Buy, (2.8a)
Y, = Czp + Duy, (2.8b)

together with an initial state vector xo, where x;, € R", u; € R" and y, € R™ are the state, control
input and output vectors respectively. The constant matrices A € R"*", B € R™" C € R"*"™ and

D € R™™ represent the internal operation of the linear system, and are used to determine the system’s
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response to any input.

2.2.2 Weighting Sequence Description and Markov Parameters

Solving for the state x; and the output y, with arbitrary initial condition x( in terms of the previous

inputs u;, ¢ = 0,1,...,k, yields

k
x = Az + > AT Buy, (2.9a)
=1
k .
y, = CA*zo + > CA™ Buy_; + Duy. (2.9b)

i=1

It appears naturally that the constant matrices sequence
ho=D, hi=CB, hy=CAB, --- h,=CA*'B, ... (2.10)

plays an important role in identifying a mathematical model for linear dynamical systems. These
constant matrices {hi}izl,z,... are known as system Markov parameters (impulse response functions) or,
in short, Markov parameters. It is obvious that the matrices A, B, C, D are embedded in the Markov
parameter sequence; undeniably, the determination of Markov parameters should be tantamount to

system identification. The general form of the Markov parameters is thus

D i=0,
hi=4 CA™'B i>1, (2.11)
0 i <0.

2.2.3 The Eigensystem Realization Algorithm (ERA)

The basic development of the state-space realization is attributed to Ho and Kalman [5] who introduced the
important principles of minimum realization theory. The Ho-Kalman procedure uses the Hankel matrix
to construct a state-space representation of a linear system from noise-free data. The methodology has
been modified and substantially extended to develop the Eigensystem Realization Algorithm (ERA) [13]
to identify modal parameters from noisy measurement data. System realization begins by forming the

generalized Hankel matrix composed of the Markov parameters:

hryr hpg2 oo hiq
H,(Cp’q) _ hivo  higs - Rpgqtt _ OWAFR@), (2.12)
L N
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with O® and R'? the observability and controllability matrices:

C
CA
o») = | cA2 , RY = | 4B 42B ... Aq—lB} . (2.13)
CcAr—1
For the case when k = 0,
hy  hy - hq
Hép,q) hahs e he — 0P R (2.14)
_hp hpyr - hPJFQ*l_

If pm > n and qr > n, matrices R and O™ are of rank maximum n. If the system is controllable and
observable (see Appendix xx for the concepts of controllability and observability), the block matrices
R and O™ are of rank n. Therefore,

rank [H(()p’q)} = rank {O(p)R(q)} < min (rank [O(p)] ,rank [R(Q)D =n. (2.15)

Since rank [R(Q)} =n (R(Q) is non-singular, the system is assumed to be controllable), multiplying both

sides by R(Q)T

yields
n = rank [O(p)] = rank [(O(p)R(q)) R(Q)T} < rank {O(p)R(q)} = rank [Hép’q)} . (2.16)
Hence we have

rank [ng’q)] =n. (2.17)

If the order is n, then the minimum dimension of the state matrix A is n X n and therefore, for any
k>0,

rank [H,(f’q)] =n. (2.18)

Thus, it appears that identifying the number of dominant singular values of the Hankel matrix provides
an indication about the unknown order of the reduced model to be identified. Even if more advanced
methods for distinguishing true modes from noise modes exist, a simple singular value plot often

allows the engineer to determine the order of the system. Thus, it is possible to observe the following
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approximation

o | [y™T
HP? —usv' = [u® y©)]

0o sO||yoTf
—ymemym’ L gOs0yo’ (2.19)
~—————
~0
~Umumy e’
where U™ and V™ are orthonormal matrices:
U g — vy Ty e, (2.20)

Since H (()p ) g primarily represented by the controllability and observability matrices, a balanced

factorization leads to

oW — ymxnm/?

HPY —ymsmy®’ — g R - ”

T (2.21)
v

R@ — ()

T T
This choice makes both O and RY balanced. Notice that RYR@ = 0® 0P = (™ The
fact that the controllability and observability matrices are equal and diagonal implies that the realized
system is as controllable as it is observable. This property is called an internally balanced realization. It
means that the signal transfer from the input to the state and then from the state to the output are

similar and balanced.
With £ =1 in Eq. (2.12), one obtains that
HP) — oW gR@ — ymxm? gnm! Py (2.22)

and a solution for the state matrix A becomes

y—1/2 —1/2

A=0oW' HPIRW! — 5 Pym T groymsm (2.23)

Moreover, from Eq. (2.13), it is clear that the first r columns of R form the input matrix B whereas
the first m rows of O”) form the output matrix C. Defining O; as a null matrix of order i, I; as an

identity matrix of order i and

B~ (1, 0. - 0.]. (2:240)

E™ :[IT o, .. OT}, (2.24b)

a minimum realization is given by

—1/2 ny—1/2

A=0W gPIRW! 5T Py gEoymsm T (2.25a)
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Figure 2.2: Overview of the eigensystem realization algorithm (ERA)
R 1/2 T
B = RYDEM — »(n)/ "y, (n) E(T), (2.25b)
. T T 1/2
C=Egm™ ok = gm yrnk) , (2.25¢)
D = hy. (2.25d)

The realized discrete-time model represented by the matrices A, B , C and D can be transformed to
the continuous-time model. The system frequencies and damping may then be computed from the
eigenvalues of the estimated continuous-time state matrix. The eigenvectors allow a transformation of
the realization to modal space and hence a determination of the complex (or damped) mode shapes and
the initial modal amplitudes (or modal participation factors). Figure 2.2 displays a summary of the
procedure.

Note that the Markov parameters correspond to the impulse response of the system and are thus
readily available if an impulse input is applied to the system. For more generic input, one has to identify

the Markov parameters through a least-squares procedure.

2.2.4 The ERA from Initial Condition Response

When there is no input to the system, the state-variable response described by Eq. (8.1) with an arbitrary

set of initial conditions xg is:

x), = AFxy, (2.26a)
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= CAFx,. 2.26b
Yk

In that situation, the significance of previously defined Markov parameters is gone. As they are originally
defined as pulse response, there is no worthwile definition for these matrices here. Similarly, there is
no meaning for controllability in this case as the input control is set to zero. However, the concept
of observability is still relevant. Even though observability and controllability of a linear system are
mathematical duals, the concept of observability is just a measure of how well internal states of a system
can be inferred from knowledge of its external outputs. Even though controllability has no substantial
meaning, it is possible to define a controllability-like matrix, named the ensemble matrix Q(q)7 that

gathers the state variable at different times:
Q(q) = wo A$0 Azmo “en Aq71$0 . (2.27)
Since xg is a n-dimensional vector and A € R"*™ Q(Q) € R™*? and has rank n from the moment ¢ > n.

Let’s now define a Hankel matrix as

Yk Yie+1 - Yhtq—1
H;f’Q) | Yk Yk Yktq = 0P ARQW, (2.28)
| Ye+p—1 Yrtp =" Yktptq—2]
For the case when k = 0,
Yo Y1 - Yy
H(()P,q) Y1 y.2 Yq — O(;D)Q(Q)_ (2.29)
(Yp—1 Yp " Ypig-2]

If pm > n and g > n, matrices Q(Q) and O® are of rank maximum n. If the system is observable, the

block matrix O, is of rank n and
rank {Hff’”] = n. (2.30)

Following the exact same steps as before, this leads to

ow — ymxm/?

(ra) _ gmgpmym’ _ ok g@
H =U"3¥"Vv =0 = , 2.31
0 @ Q) — sy mT (231)
and a minimum realization is given by
A= O(P)]LI{?”‘I)Q((I)]L — E(")71/2U(")TH§P»‘1)V(”)E(”)fl/{ (2.32a)
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1/2
)

O = EM™ o® = gm T yr) sm (2.32b)

1/2

-
&0 = Q(Q)E(l) = n®) 7y m) " g (2.32¢)

2.2.5 ERA and DMD

Similarly as ERA, the dynamic mode decomposition (DMD), first introduced in the fluid dynamics
community [20-23,58,60,61], provides a practical numerical framework for Koopman mode decomposition.

ERA and DMD have been useful for extracting spatial-temporal coherent structures from data, and

happen to be very similar in their implementation.

ERA Algorithm

DMD Algorithm

1. From measurement data {yg,¥y;,- -}, build

Hankel matrices H ép D and H gp 2 from

Yi Ye+1 7 Ykyg—1
(»q) _ Yi+1 Yp+2 Yitq
H;”" =
| Yktp—1 Yk+tp °° Yktptq—2]

1. From measurement data {y,, ¥y, -}, build

ensemble matrices

‘1'0:{110 Yy nyl}’

'Ill:[yl Ya ?JN}'

2. Compute SVD of H ép D and select the domi-

nant modes

HP? —UusvT ~umsmy ™’

2. Compute SVD of ¥ and select the dominant

modes

T, =USV ~Uumsmym’

3. Define the matrices

P —1/2

A= s PymT graymsm 2

C= U(n)E(n)1/2[1 im, .

3. Define the matrices

—ym groymemT

SN

C=umxm [1:m,:].

4. Dynamics on the n—dimensional subspace are

governed by

LTr+1 = Amk,

Y. = émk.

4. Dynamics on the n—dimensional subspace are

governed by

Ty = Ay,
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It is clear to see that while DMD and the ERA were developed in different contexts, they are closely

related: the two realizations are related by the similarity transform

A=smV2inm!/? (2.33)
If v is an eigenvector of A with Av = v, then w = E(”)1/2v is an eigenvector of /:1 since
2 2 2 1/2 1/2
Aw = An™ 2y = 502 fy = xm ™2y = . (2.34)

The connection suggests that strategies used in ERA computations could be leveraged for gain in DMD
computations. Specifically, the Hankel matrix structure with time-shifted data used in ERA helps to
overcome rank problems as long as p and ¢ are large enough. In this dissertation, subspace identification
methods are based on ERA, but it can easily be transformed into a DMD-type of algorithm using a

similarity transform.

2.2.6 Conclusion

This section provided an algorithm to identify a linear subspace that governs the dominant dynamics
of a dynamical process. If the process is linear, the identification is exact (up to the noise content); if
the process is nonlinear, the identified linear system is a projection of the nonlinear dynamics onto a
balanced linear subspace. Identifying nonlinear dynamics directly is another challenge and demands

high-order expansions, as we will see in the next section.

2.3 Nonlinear System ldentification: Problem Statement

The methodology for nonlinear system identification is quite different. While linear algebra techniques
happen to be very powerful in identifying the system matrices of linear systems, the question on how
to identify nonlinear functions f and g from Eq. (2.2a) and Eq. (2.2b) is a very challenging problem
and still an open question in the field. Therefore, the majority of methods in the field adopt a major
assumption to simplify the problem: the measurement equation Eq. (2.2b) is dropped and consequently
we suppose to have access to the system’s state x(t) at all time. The dynamics is thus expressed in a

state space form from Eq. (2.2a) as
am(t) = f(t,z,u), =(0)=xp. (2.35)
With only unknown dynamics f, the main essence of popular system identification methods has been to
expand this nonlinear function as a linear combination of basis functions or kernels, and their amplitude.
Thus, the system identification problem is in general stated as an optimization problem as follows: given

the time history of the state vector @(t), control action vector u(t) and a predetermined finite set of
basis functions {¢1, ¢a2, - ,dn}, ¢ : X xU—=>R,i=1---N,

N
d
find the coefficients a; € R™ such that &x(t) =f(t,z,u) ~ Zai@(ac, u), (2.36)
i=1
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with ¢; denoting the i—th basis function. As N — oo, the approximation becomes more and more exact
since higher-order terms are included to describe the dynamical flow; however the representation is less
parsimonious and more complicated. Thus, for practical implementation, the expansion is truncated
to a finite dimension N and the choice of that number N gives way to a trade-off between accuracy
and complexity. Being able to identify an optimal value for N (if it even exists) is one of the most
challenging - not to say the most challenging - area of research in the field of system identification.
It is essentially equivalent to identify the dimension of a stable subspace onto which the dynamics
evolves. Even though there is no automatic way to select N optimally beforehand (this usually involves
trial and error), there is an educated way to expand the dynamics using specialized basis functions
¢;. When ¢, are linear functions of  and u (decoupled), the approximation in Eq. (2.36) is a linear
approximation and linear system identification techniques can be applied (equivalent of system matrices
A. and B.). When ¢; are bilinear functions of @ and wu, the approximation in Eq. (2.36) is a bilinear
approximation and some specialized techniques in bilinear system identification are required to optimally
solve for a;. When other types of basis functions ¢; are involved, the challenge is immense as nonlinear
system identification methods are much more arduous and there is no existence of a common framework.
Nonlinear system identification problem methods [2,30-34,39-45,52,53] differ in their choice of basis
functions ¢; and their learning methodology. Oftentimes, an automatic way of expanding the dynamics
is by selecting an orthogonal basis. For example, when a polynomial basis is chosen to represent the
dynamical expansion, then it is called a Carleman linearization [62,63], which has been used extensively
in nonlinear system analysis [64-67]. Additional types of basis functions such as cosine and sine waves
(Fourier series) or radial basis functions can be considered. In this dissertation, all three cases (linear,
bilinear and nonlinear system identification methods) are be studied. Bilinear system identification
techniques will be carefully studied in chapter 7 as the introduction of a control input w drastically
increases the complexity of classical system identification techniques. The next section expands on the
Carleman linearization and the Koopman operator theoretic approach which offers a major step forward
nonlinear system identification. In the remaining of this chapter, we consider that there is no control

input. In future chapters, a control action may be introduced, depending on the maturity of the method.

2.4 Carleman Linearization

If * is a nominal trajectory, the departure dynamics verifies the following differential equation (Taylor

expansion):
= 1 = 1 _of" 192 f
p times
(2.37)
with dx(0) = zf — o and
orfr orf
24 2.
OxP  OxP|,__. (2.38)

denotes the higher-order sensitivity tensor evaluated along the nominal trajectory @ = a*. The product

® is defined as the outer product and : corresponds to the tensor product. This expansion is called a
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Carleman linearization and considering terms up to order p leads to a Carleman linearization of order p.
With Eq. (2.37), one has a global representation of the dynamics using tensors and tensors products
but index notation can become convenient to describe high-order tensor algebra. Similarly as described

in [68,69], the departure dynamics can be written as

[ NAYE A

’@

oo
1
o (t Z— 6xr15wr2--~6mrp, 1<i<n, 1<r;<n, 1<j<p (2.39)

where

o’ fi

02y, Oy, - - - Oy, (2.40)

f;:’r'l’!‘g'“’!'p =
T=x*

is the i'" row of the higher-order sensitivity tensor (i.e. first dimension of the tensor). For certain classes
of dynamical systems, these sensitivity tensors can become 0 quickly or at least be very sparse. Along

with these higher-order sensitivity tensors, one can compute the state transition tensors

8p$i

v 6'2:07"1 ax()rz o BJTOTP

*
1,717 T

(2.41)

r=x*

that calculates the change in the solution of the nonlinear dynamical system with changes to initial
conditions. The state trajectories dz;(t) are mapped from their initial conditions by these state transitions

tensors:
o (t Z T riraeery 0T0p, 0T0py * 0T0p, - (2.42)

The time evolution of these state transition tensors is given by the differential equations [68, 69|

* ok *
75 = fin ‘I’m,jl (2.43a)
% _ *
i,j1j2 i 1 7"1,]1]2 + fi 1T rl,glq)rg,jz (2.43b)
E _ px * * * * * * *
(I)i,jljzjé - Jim (I)T1’j1j2j3 + fl T1T2 ((I)Tl ,J1J2 (I)Tz,h + cI)Tl ,J173 (I)Tz 2J2 + (I)Tl 2273 cI)T2,j1) (2 43(3)
* * * * :
+ fi,ﬁ?”ﬂs (I)Tl Jl(I)rg J2 (I)rwz
O = /i Koo
©,J1J2J3J4 — 44,71 T T1,J1J27304
* * * * * * * *
+ fi,Tsz ( T1,J1J293 © T2,j4 + T j1j2j4q>T27j3 + T2 jzjsjz;q)?“l,jl + r1,J1J374 7"27j2)
* * * * * *
+ fi,n?’z ( T1,J152 (I)Tz gsja T (I)n J1d3 (I)Tz S M q)rz J2J3 (I)n,jlj4) (2.43d)

+ fi*r1r2r3 ((I)* (I)* (I)* + (I)* Q)* (I)* + (I)* (b* (I)*

r1,J1J2 T T2,J3 © 13,74 T1,J1J3 T T2,J2 T T3,J4 72,J2J3 T T1,J1 " T'3,J4
* * * * * * * *
+ (I)h ,J1Ja T2 2J2 (I)Ts J3 + (I)Tl ]1(1)7’2 J2Ja (I)Ts J3 + @T2 ,J2 (I)ﬁ 2J1 (I)T37j3j4)

_|_ f * * * *
1,T1T2T3T4 T T1,J1 T T2,J2 T 13,73 T T4,74
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with initial conditions

O7 (to,to) =i, ;5. (toto) =0, Vp > 1. (2.44)

These equations can be derived by comparison of coefficients and by referring to the basic definition of
the state transition tensors and taking the time derivatives. Notice that these differential equations are
linear and can be solved sequentially, since they are in cascade form. This special structure allows one
to build a linear operator that describes the evolution of the state transition matrix and higher-order
state-transition tensors. To obtain an insight of that linear operator, and without loss of generality,

consider a system of dimension n = 2 (can be easily generalized for a system of arbitrary dimension).

Eq. (2.43a) can be re-written as

o7, fia 0 ffp 0| |97,
g 0 fix 0 fia] |® |l fiol .
'1,2 _ 1,1 1,2 12| g o |11 1,2 P o b = g o (2.45)
3, f5i 0 f3, 0| |93, faila fsola
D30 [0 f5n 0 fEa| [D3a]
T
with ®* = [qrf . O, By, B3, and a first-order linear operator as
il f{22
Gi=1|" ’ (2.46)
o112 f3o12

The subscript “1” means that the operator is built considering first-order dynamics only. Now, appending
Eq. (2.43b) to Eq. (2.43a), it is possible to write the linear operator Gi42 as

f1*7112 fiQIQ 02><4 02><4 02><4 02><4 O2><4 02><4
312 foolo O2xa Oaxa Ozxa O2x4 O2x4 O2x4
Oax2  Oux2 [Tl fiols  fii1la Jia2la Jio1la I 2214
Grin = Osxz  Oaxz f31ls f3ola 31114 f3 1214 f3 0114 f3 2014 (2.472)
Osx2  Oaxz2 Oaxa  Osxa 2f7114 I 214 fio1a O4x4
Osx2 Oax2  Oaxa  Oaxa  foila (ff1+f32)a 044 fi 21
Osx2  Osx2  Osxa  Osxa  f31l4 Ogx4 (fi1+foo)la fiols
_04><2 O4x2 O4x4 O4x4 O4x4 f2*,214 f2*,214 2f§,2‘[4_
a0
— | 7 T (2.47b)
[024x4 G2
with the vector ®* now defined as
P = [(DT,I Pl P53, Doy P Plp Pior Pion (2.48)

22



. } b (2.49)

D511 P12 Pror Prop o PF P
with 1 <7y, 1,792, j2 < 2, such that
d =G (2.50)
The operator Gy in Eq. (2.47b) is defined as
Jiads fiols fiila Ji121a fi211a f1 2214
f§,1]4 f2*,214 f2*,1114 fﬁk,12—r4 f§,21[4 fﬁk,2214
G, Osxa  Oaxa  2f7 114 fi2la fiols Odx4 . (2.51)
Ouxa  Oaxa  f31la (fin+ f32)a O4x4 fi2a
Osxa  Osxa  f3 114 0454 (fT1+ i)l fiols
| Oaxa Oaxa Oaxa I311a I311a 23214

Notice that the first- and second-order dynamics of the state transition tensors are decoupled (the matrix
G112 is block diagonal) and that the previous operator G; is contained in Gy15. The dimension of the
operator Gy42 is 4 + 24 = 28, much larger than the dimension of G; (= 4). Further, it is imaginable to
expand this operator with higher-order dynamics following Eq. (2.43c), Eq. (2.43d) and so on. Expanding
the vector ®* appropriately, it is possible to write this linear relationship for dynamical systems of

arbitrary dimension up to arbitrary order as
" =ga*. (2.52)

The objective here is not to explicitly come up with a succession of operators Gi1,Gs,Gs... etc, but rather
to observe that one can re-write Eq. (2.43a)-Eq. (2.43d) (and more) into a matrix form and highlight
the existence of a succession of linear operators (of increasing dimension) that describe the evolution of
the higher-order state-transition tensors. Hence, the knowledge of higher-order sensitivities of Eq. (2.40)
leads to the knowledge of the evolution of higher-order state-transition tensors and accordingly, the
knowledge of the dynamical evolution of the state of the system through Eq. (2.42). The higher the
expansion, the higher the accuracy as this is equivalent to increasing the value of N from Eq. (2.36).
While the developments above are valid on a theoretical level, they are of little to no use in practice
because one needs to have access to values of the state-transition tensors. Methods based on Carleman
linearization corresponds to identifying higher-order sensitivities (or higher-order state-transition tensors
in a discrete-time domain) [62,63]. Nonetheless, the focal point of this discussion is the fact that there
exists some sort of linear operator embedded with the evolution of the state transition matrix and

higher-order state transition tensors. This development is studied further in the next section.

2.5 Introduction to the Koopman Operator

From now on, and without loss of generality, we will consider the nominal trajectory * to be zero which

leads to dx = x.

23



Let’s consider the operator G; and let us re-write that operator as

G1 =K1 ® I, (2.53)
with
K= |0 Fief (2.54)
fan fao
From Eq. (2.37) or Eq. (2.39), notice that
T ’ r x
o I ELEE A I L) IR (2.55)
To 51 f32] |22

-
with x = [331 3;2} . Considering only first-order dynamics, the operator Ky is a linear operator that

advances the state of the dynamical system forward in time. The coefficients of that operator are directly

the first-order sensitivities. Similarly, considering the operator Ks as
Go =Ko ® Iy, (256)

the time evolution of the state of the dynamical system considering a second-order expansion is

T1 i1 e A VERD: i I1 22 z1
T2 f2*.,1 f2*,2 fék,n fik,12 f§,21 f2*,22 L2
a? 0 0 2f f1 f1 0 2?2
oo N 1,1 1,2 1,2 i ’ (2.57)
172 0 0 31 fiat/se 0 12| |2172
T2T1 0 0 fi 0 fiit+ oo fio| |2271
L a3 ] | 0 0 0 faa f3a Qfék,z_ L a3 ]
such that & = Kox with
i fie fin IR fin I122
51 32 fon f312 fin 1322
0 0 2ff T It 0
Ky = 1,1 1,2 1,2 (2.58)
0 fi1 fiait+/f3e 0 Iia
0 0 f3 0 fiit+fse fio
0 0 0 g TN

Notice that the symmetric basis functions z1x2 and xox; have been written separately. This time,

second-order dynamics are considered and the operator Ko is a linear operator that advances the state
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and second-order polynomial combinations of the state forward in time. This operator comprises the

coefficients of the first- and second-order sensitivities, rearranged. By extension,
Gn =Ky @ Ign, (2.59)

and as n — oo, both G,, and /C,, become infinite dimensional operators, G and K. Though the operator G
doesn’t have a name, the operator K is well known by the community and is called a Koopman operator.
While more formal definitions will be given in the next two sections, the main idea behind the Koopman
theory [47,48] is to lift the nonlinear dynamics into a higher dimensional space where the evolution of
the flow of the system can be linear. With a proper choice of basis functions (polynomial bases here),
the information contained in the Koopman operator is exactly equivalent to the information contained
in a Taylor series expansion (or Carleman linearization) of the nonlinear flow about a nominal trajectory
with the order of expansion being equal to the order of lifting functions. The next two sections will

provide a more academic definition of the Koopman operator.

2.6 Continuous-Time Koopman Operator

This section aims to provide a formal definition and discuss the basic properties of the continuous-time

Koopman operator. Consider the autonomous nonlinear dynamical system

d
720 = fx®),  x(0) ==, (2.60)

where t e R, x € X CR”, f: X — R™. Assuming the system has a unique solution, and consequently
its inverse, existing over any time interval, Eq. (2.60) has an associated continuous-time flow map F.
defined in Eq. (2.61a) and satisfies group properties defined in Eq. (2.61b), where F’ : X — X.

x(t) = F'(x0 —a:0+/ f(x (2.61a)

Vt,s € R, F'oFi()=F'"(), F%)=1. (2.61b)

The continuous-time Koopman operator K¢ is defined generally as an infinite-dimensional linear operator

that advances some complex-valued measurement function x : X — C through

x(z(1)) = Kex(ao) = x o Fe(o) (2.62)

where Kt : F — F, and x(z) is a measurement function in the Hilbert space F. Eq. (2.62) defines
the Koopman operator as a unitary and possibly infinite-dimensional linear operator acting on the
measurement functions. It is also important to note that the Koopman operator is a member of the
continuous one-parameter unitary group of operators {Iij}teR generated by the Koopman generator K.
defined by Eq. (2.63a), provided the limit exists [70]. The Koopman operator in this setting is also said
to satisfy the group properties defined in Eq. (2.63b),

Kex = lim ICCAtX_X—l' 7XOFC&_X

— 2.
At—0 At At At ’ (2.632)
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Vs eR, KLoki()=KH(), K°()=1. (2.63b)

If the measurement functions are differentiable, Eq. (2.63a) indicates that the Koopman generator

applied to a measurement function x is the time derivative of the measurement, x, and

d () = tim XEEHAD) =x@®) _ Ke'x —x

i Ao At A=A e (2.64)

The central observation is that Eq. (2.60) and Eq. (2.64) are equivalent and there has been a trading
between nonlinear dynamics in a finite-dimensional space and linear dynamics in a potentially infinite-
dimensional lifted space. Also note that the problem of finding the operator K. in Eq. (2.64) is equivalent
in reformulating Eq. (2.36) as

N
d . .
find the coefficients «; ; € R™ such that ax’(w) ~ Z a; ;X7 (), (2.65)
i=1
T
with x = [Xl X2 - XN] and «; ; are the coefficients of the operator .. The Koopman operator

is shown to fully capture all properties of the underlying nonlinear dynamical system provided that the
state vector @ is observable from the lifted space of measurements x [54,55]. Providing that one has
access to that linear operator K., this allows one to obtain precise predictions of a nonlinear dynamical
system as the output of a linear dynamical system (see Table 2.1. This approach, called the Koopman
operator theoretic approach, does nothing but augment the problem defined in Eq. (2.36) with an

additional set of differential equations.

Table 2.1: Comparing dynamics in original coordinate system and augmented space of measurements

Dynamics in the original coordinate system | Dynamics in the lifted space of measurement F

Nonlinear:  &(t) = f(x(t)) Linear: x(x(t)) = Kex(x(t))

As a quick and illustrative example, consider a single fixed-point nonlinear dynamical system
introduced in [57]:

= px (2.66a)
7=y — 2?) (2.66b)

Notice that one can obtain the following analytical expression for the continuous time Koopman operator

>
by appending the state vector with 22 as measurements, i.e., x = [x y xQ] :

T nx w0 0 T
X=1y|=[Ay-2?)|=[0 X x| |y|=Kex (2.67)
2 2x.ux 0 0 2ul| |2?

This synthetic example highlights a case where the associated Koopman operator K. is of finite

dimension. As explained later in this chapter, the simple representation of the observable x may not

26



be as straightforward for every system. In other words, identifying the correct measurement functions
may not be simple and may become arbitrarily complex once iterated through the dynamics. Along
with the discussion of the continuous-time Koopman operator, it is natural to introduce its discrete-time

counterpart. This is what is presented in the next section.

2.7 Discrete-Time Koopman Operator

First, let F' be the discrete-time flow of the dynamical system that maps the state from one time to
the other, with a time-step size At. Integrating these trajectories through the equations of motion
(Eq. (2.60)) leads to the time update equation

to+At
F(x(ty)) = x(to + At) = x(tg) + / f(z(r))dr, (2.68)

to

or, introducing xy = x(kAt),
Tpy1 = F(iL‘k) (269)

If x; = x(xx) represents a set of measurements of the state vector « in a Hilbert space F of functions,
then the possibly infinite-dimensional discrete Koopman operator K is a linear operator for the transition

of these measurements forward in time, i.e.,

Xk+1 = KXk (2~70)
where
Xk
Xr = | X3 | = x(zx) (2.71)

and each % = x*(zx), i = 1,2,..., is assumed to be observable in F. Note that Eq. (2.70) provides an
infinite dimensional linear time-invariant (LTI) system version of the nonlinear flow of Eq. (2.60) in the

measurement space F. Since X1 = X(Tr+1) = X(F(xk)), one can write
Kx,=xroF. (2.72)
The continuous-time and discrete-time Koopman operators are connected by

K= K5t (2.73)
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Figure 2.3: Overview of the Koopman operator theoretic framework
In practice, the measurement vector X is truncated to a finite dimension N:
1
Xk
2
Xk
Xk = (2.74)
N
Xk

Figure 2.3 offers a general view of the Koopman operator theoretic framework.

2.8 Challenges to Find a Koopman Operator

As we started to explain before, the major challenge in the field of system identification is to be able to
identify a stable subspace onto which the dynamics evolves. As an extension, the core challenge of the
Koopman operator theoretic approach is to specify (directly or indirectly through decompositions) the
Hilbert space of measurement functions of the state of the system. A simple yet illustrative example
shows a drawback associated with a naive representation of the infinite dimensional Koopman operator

for a simple chaotic system. Consider the dynamical system given by:

&= 22 (2.75)
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2 2

If the state x is considered as a measurement, so does 22 since & = z2. If 22 is considered as a

3 since 22 = 2@z = 22>. A cubic polynomial term is required to advance z2 and

measurement, so does x
a quartic term is required to advance x3. And this keeps going with all monomials of arbitrary degree.

Eq. (2.64) would now be written as

T 01 0 O T T
22 0020 a2 22

x= |23 =10 0 0 3 3| = Kex, with x = |23 ] . (2.76)
7 0000 zt o

The Koopman representation of the dynamics is now infinite-dimensional. In order to obtain a finite
representation of the dynamics in the Koopman framework, one will need specialized bases. For a given
dynamical system, there might be these special coordinates where the dynamics are linear, but there is
no guarantee one is able to find them, especially for more complex dynamical systems. For this scalar
case, this special basis actually exists and is given by y = e~ /% such that

d .
ax _ x—2€—1/1

i=e Y=y, (2.77)
and K. = 1. Instead of capturing the evolution of all measurement functions in a Hilbert space, applied
Koopman analysis attempts to identify key measurement functions that evolve linearly with the flow of
the dynamics. Eigenfunctions of the Koopman operator provide just such a set of special measurements
that behave linearly in time. In fact, a primary motivation to adopt the Koopman framework is the
ability to simplify the dynamics through the eigen-decomposition of the operator, which is still a very
active area of research. Most of the time, researchers assume a set of basis functions {¢1, ¢a,- -+, dn},
¢;: X—=R,i=1---N, as an augmented set of measurements to represent the dynamics. One could
argue that given a sufficiently large amount of data, it is possible to find the operator using simple
least-squares regression techniques [53]. However, long-term prediction is nearly impractical as error in

propagation builds up at a fast pace. To illustrate that phenomenon, consider the Duffing equation

Sbl = T2 (278)
By =y — 43 (2.79)

A 6-th order expansion is considered and 300 training trajectories are generated around a nominal
starting point with covariance 0.04/5. Exact values of the state and state-derivatives are used to

formulate the least-squares problem. Figure 2.4 shows the pure propagation from one of the training

points (xg = [0,5 0,45} ) and it is clearly apparent that any error introduced in higher-order basis
functions ends up hurting the propagation process at future time-steps. Performing a least-squares fit on

an augmented observable vector yields only poor results as there is a slow convergence to the real dynamics.

More recently, subspace realization methods have offered a way to identify a Koopman operator

from data. The theory has been applied for uncontrolled [54,55] and controlled systems [56,57] with
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Figure 2.4: True vs. least-squares approximation of a training trajectory

promising results using popular subspace realization methods such as dynamic mode decomposition
(DMD) and its extensions [58]. The resulting linear operator is a local approximator of the nonlinear
dynamical system valid in the neighborhood of a nominal point and the domain of validity of this local
linear approximation improves as the dimension of the lifting space is increased. However, one may need

a very large dimensional lifting space to accurately capture the flow of the underlying nonlinear system.

One of the alternatives to improve the validity region of the Koopman operator and curtail the
dimension of the lifting space is to consider the linearization of the nonlinear flow about a nominal
trajectory of the nonlinear system rather than a nominal point. The linearization about a nominal
trajectory leads to a linear time-varying (LTV) system as opposed to a linear time-invariant (LTT)
system for the conventional Koopman operator. However, LTV systems exhibit distinct properties, as

compared to the shift invariance exhibited by LTI systems.

2.9 Conclusion

This chapter has introduced some of the mathematical foundations useful to fully apprehend the scope
of this dissertation. More than a handful of notations, this chapter aims to establish the mindset around
which this research work has been conducted. From an elementary expansion of the nonlinear dynamics
into a set of basis functions and their amplitude, the purpose of this dissertation is to produce methods
and algorithms to accurately characterize the dynamics given some time history of observable data. The
next two chapters will highlight some of the techniques developed to achieve this goal, either from a

continuous or discrete-time point of view.
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Chapter 3
Continuous-time Koopman Op-
erator

3.1 Introduction

There is no doubt that the choice of basis functions significantly influences the approximation accuracy
and complexity of the model. For many known physical systems, the nonlinearities can be represented by
only a few terms with a judicious choice of basis functions. In this respect, many efforts have focused on
adapting the architecture of the network by selecting appropriate models from a pre-defined dictionary
of models [37,38,49-51|. However, this leads to an exhaustive search algorithm to learn the appropriate

basis functions to represent the network dynamics.

More recently, advances in compressed sensing and sparse regression have been exploited to learn
appropriate basis functions from an over-complete dictionary of basis functions without performing an
exhaustive search [39-41]. To determine the form of the dynamics from data, these methods collect a
time-history of the state and its derivative sampled at a number of instances in time. In the case where
the derivative is not part of the measurement model, they construct state derivative information by
finite difference methods which make derivative calculations susceptible to noise in measurements. After
carefully arranging relevant basis functions in a dictionary, a linear least-squares problem is posed to
find unknown coefficients of the basis functions. To enforce sparsity, an iterative least-squares problem
is solved where the dictionary size is reduced by removing basis functions whose amplitudes are lower
than a prescribed threshold. Although this sparse representation through the iterative least-squares
problem guarantees the balance between model complexity and accuracy, the resulting algorithm is
susceptible to noise in state measurement. In [42,43], an approach named subsampling-based threshold
sparse Bayesian regression (Subtsbr) is presented to accomodate high noise in the measurments for
states and state derivatives. A Galerkin formulation that involves projecting the errors on a set of
basis functions known as test functions is considered in [44] to avoid estimating time derivatives of the
state variables. While this formulation provides better results in the presence of noise, the choice of
test functions severely affects the performance of the algorithm. The formulation in [45] considers a
direct integral form of the dynamics for first order systems in conjunction with a regularized ¢; op-

timization problem to find the appropriate basis functions to approximate the unknown system dynamics.
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As an extension of these recent formulations, the main objective of this chapter is to consider
an integral form of the differential equation to estimate unknown amplitudes of basis functions with
only state and input measurements for a first-order system [52]. Rather than a pure integral form
considered in [45], a low-pass filter is designed to avoid infinite response at low frequencies or large
time intervals. The secondary objective of this work is to generalize this approach for identification
of second- and higher-order systems with only position-level measurement data and systems with a
control input. Furthermore, the iterative least-squares problem is replaced with an iterative regular-
ized f; optimization problem as used in our earlier work on sparse collocation methods for optimal
feedback control laws [71]. This guarantees that the sparse solution is found with high probability
using convex optimization methods. The methodology is validated by considering two nonlinear oscilla~
tors with or without noisy measurements and on a second-order system involving a central force field.

Comparison between a deep-learning approach and a sparse solution is presented at the end of the chapter.

The structure of this chapter is as follows: Section 3.2 provides a mathematical treatment of the
system identification problem while Section 3.3 provides the derivation of the developed methodology for
first and second order systems. Section 3.4 shows the efficacy of the developed approach by considering
two nonlinear oscillator problems and identification of Newton’s law of gravitation through satellite
motion data. The chapter concludes with summary of results in Section 3.5 and generalization of the

developed approach for the generic-order systems in Appendix A.

3.2 Problem Statement

This chapter aims to provide an extended, unified and automatic framework to discover the governing
equations underlying a dynamical system simply from data measurements, based on the assumption
that the structure of the dynamical model is governed by only a few important terms. Let us consider a

general dynamical model similar to Eq. (2.35) with the addition of an affine control input
o(t) = f(x(t)) + Gu(t), (3.1)

where x(t) € R™ represents the state of the system and u(t) € R” the control action at time ¢ and
G € R™ " is the constant input-influence matrix. The unknown nonlinear function f : R® — R"
represents the dynamics constraints for the system. The goal here is to find the structure of the unknown
function f given the time history of x(t) and u(t) and constant control influence matrix, G. Considering
a set of basis functions {¢, }jzl...oo’ ¢; : R" = R, f can be approximated as a linear combination of

these basis functions [2,32]
f(x) = Z a;oi(x), (3.2)
j=1

where {a; }j:1 o> @ € R is a set of unknown coefficients. There are infinitely many choices for basis

functions such as polynomials, trigonometric functions, radial basis functions, etc. As we started to

discuss in the previous chapter, a central difficulty in learning f lies in choosing appropriate basis
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functions and the choice of basis functions unfortunately depends on the characteristics of an unknown
input-output map. In an appropriate basis, the equations are often sparse in nature and the resulting
model is parsimonious, i.e., a very few of a; are non-zero. It is desired to choose the basis functions
that allow f to be represented with as few terms in Eq. (3.2) as possible [39,40]. In this respect, the

summation in Eq. (3.2) is taken over a finite number of N basis functions:

flz) = ﬁ;am(w), (3:3)
e
or equivalently
f(z) = ad(z), (3-4)
where o = {al Qs - QN} € RN and ¢(x) = {¢1(w) pa(x) - on(x) " ¢ RN, The

objective is to search a given handbook of known functions for a set that best represents the given
data. Recent advances in compressed sensing and sparse regression [39,40,45,72] can be exploited to
learn these few non-zero terms from an over-complete dictionary of basis functions without performing
a combinatorially intractable brute-force search. The next section provides the mathematical details

corresponding to finding a sparse solution for c.

3.3 General Methodology

As stated in the previous section, the objective is to find a sparse solution for the « given the time
histories of x(t) and w(t). If the time history of &(¢) is known, then one can solve for the unknown
coefficients a through a least-squares solution. In Refs. [39-43], different iterative algorithms are
proposed to find the best set of basis functions to represent f accurately. If the time-derivative of x(t)
is not available, then one needs to reconstruct this information through time history knowledge of x(t)
via finite difference. Such an approach is sensitive to noise in measurements of (t) [40]. An integral
formulation is considered in [45] to avoid the finite difference to reconstruct the state time-derivative
information. Though an integral formulation attenuates the high-frequency content, it provides limited
attenuation at low frequencies and can lead to infinite response for a long time integration. In this section,
an alternate formulation is presented to find the unknown coefficients a; without any knowledge of ().
A low-pass filter design is considered to provide short memory and better control over attenuation at
different frequencies. First, this formulation is presented for first-order systems and then generalized for

second-order systems.

3.3.1 First-Order Systems

Considering a first-order system, Eq. (3.1) can be rewritten as

N
©(t) = ojéi(x) + Gul(t) (3.5)
j=1
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and its component-wise unilateral Laplace transformation is
X%(s) = sXi(s) — x;(0) = Zaw )+ Z GiUg(s), i=1...n, (3.6)

where L£{z;(t)} = X;(s), L{¢;(x)} = ®;(s), L{ur(t)} = Ur(s) and s is the Laplace variable. Note that
¢j(x) is an implicit function of time and hence, the Laplace transform of this time-varying signal can be
considered. From now on, capital letters are used for functions in the Laplace domain. X?(s) is the

original filtered signal (filtered O-th time). For A\; € R*, let us consider the Laplace filtering operator

Z,,: R — R,

° (3.7)
[ ] .
s+ A\
Applying the operator to the signal X! yields
N
Xi( Uk(s)
X)) =7, (X%%(s)) = sXi(s) —@i(0) _ G

2(8) )\1( ’L(S)) s+ N\ Z +A1+Z k s+ M\

(3.8)

N r
=i ;05 (s) + Y GirlU(s)
j=1 k=1

where

Ui (s)
S + )\1 ’

ol(s) = ®;(5) and Ul(s) =

s+ A (39)

The superscript !f corresponds to the filtered signal. Note that Eq. (3.8) corresponds to the integral form
of Eq. (3.1) when Ay = 0. To this end, the filtered integral formulation is a generalization of the pure
integral approach, that can have an infinite response at either very low frequency or for integration over
a long time. The use of the filter allows the analyst to introduce fading memory in the approximation
process, that allows specific control of the signal-to-noise ratio of the signals used in the identification
process. Note that this section describes a method that uses a filter to implement a system that
approximates the derivatives at low frequencies. This filter realization, however, could be generalized
with larger degrees of design freedom. For instance, writing ¢'f = F(s)¢(z(t)) with F(s) a general
strictly passive real filter of arbitrary order would allow one to extract the desirable signal properties
of importance to the physics of the problem. Though the development presented in this dissertation
assumes A\ to be a scalar quantity, one can ideally use different filters for different components of the
state vector with \; being a vector quantity. Now, adding and subtracting A1 X;(s) to Eq. (3.8) leads to

(S =+ )\1)X1(S) — )\1X¢(S) — ZEz(O)
s+ Al

=M1 Xi(s) —z;(0)
S + )\1

XH(s) = = Xi(s) + = Xi(s)+Yii(s), (3.10)

where

(3.11)
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Eq. (3.11) can be rewritten as
sYi1(s) +2i(0) = =AY 1(s) — M Xi(s) (3.12)
and its inverse Laplace transform yields
Ui (t) = —Ayia(t) — Mzi(t), 93,1(0) = —2(0). (3.13)
Similarly, the inverse Laplace transforms for <I>}f and U, ,%f yield the corresponding first-order ODEs:

P (t) = Mol (t) + ¢5(x), ¢1(0)=0, j=1,2,...,N, (3.14)
il (t) = —Mupbl(t) + ug(t), ui(0)=0, k=1,2,. (3.15)

For A1 = 0, then (b;f and u,lcf result in the time integration of ¢;(x(t)) and ug(t). For Ay > 0, these
equations correspond to a stable linear system of equations. By appropriately choosing the A;, one can
control how quickly the initial condition response of these equations will go to zero. Finally, the final

equation in the time domain can be written as
‘rzlf(t) ( + Yi, 1 Z az,]¢1f + Z G kuk (316)

3.3.1.1 Least-Squares Solution

Note that the aforementioned equation provides a linear relationship between filtered signals z}(t), uif(t)
and qb;f(t). Furthermore, these filtered signals can be constructed directly from the given time histories
of system state and control input by integrating N + r + 1 equations given by Eq. (3.13), Eq. (3.14) and
Eq. (3.15). Stacking time histories for x}f(¢), qb}f(t) and u}{(t) leads to

xzlf = ¢1fTai + (Giulf)T (3.17)

where z!f € R™*1 ¢! € RVX o; € RV*1, G; € R" and w'f € R"*! with [ being the number of data
points. In this equation, c; is the i*" row of the coefficient matrix « introduced in Eq. (3.4) and G; is
the i*® row of the coefficient matrix G introduced in Eq. (3.1). Now, one can find an optimal value of

coefficient vector, a; by solving the weighted two-norm minimization:

1
o = min ieTRe, e=xz— ¢1fTai - (Giulf)T . (3.18)

(&2

The weight matrix R can be chosen appropriately depending upon the noise in the measurement data.
Depending upon the size of [ and N, the aforementioned optimization problem can be over-determined
or underdetermined. In both cases, one can find the solution with an appropriate pseudo-inverse of (;Slf,

ie.,

a?T _ ( it — G )¢1fT _ i%f(plﬁ (3.19)
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- T .
where :cgf = w%f — G;u'f and T stands for the pseudo-inverse. q’)m corresponds to the least-squares

T -1 T
solution for an over-determined problem, i.e., gblfT = (qblf Rgblf) ¢1f R while d)lfT corresponds to

T T\ 1
the minimum-norm solution for the under-determined case, i.e., cl)lfT = d)lf R (qblfR¢1f ) . This
procedure is repeated n times (for i = 1,2,...,n) to compute the full coefficient matrix a.. Note that
one can also compute an estimate for the control influence matrix , G through this procedure given that

it also appears linearly in Eq. (3.17).

Eq. (3.19) is a minimization problem obtained by choosing certain collocation points. The choice
of the collocation points typically interferes with the filter parameter choices and one should pick the
collocation points judiciously, such that their spectral characteristics are not coincident. This is because
if they are, the filtered states result in a null solution for the system of equations. In this work, a
time-uniform distribution is chosen so that the spectral characteristics of the physics of interest are

captured for each problem.

3.3.1.2 Sparse Solution

The o corresponds to the optimal solution in terms of minimizing the two-norm of state output error
response. However, the two-norm solution is not guaranteed to be sparse in nature and is known to
pick all the basis functions in our dictionary especially in the case of noise-corrupted measurements.
To enforce sparsity, ideally the o norm of the coefficient vector a; needs to be minimized subject to
constraints of Eq. (3.17). The ¢y norm corresponds to the cardinality of the coefficient vector and
its minimization leads to a non-convex problem. However, the ¢y norm minimization problem can be
approximated by an iterative £1-norm minimization problem, which is convex in nature with a guaranteed
solution [72]:

win 17767 (3.200)

s.t. Hi}f— 05’%”“2 < aHa*c}f— o’ 1fH2, e>1 (3.20b)
where p is the iteration, 67 is the optimization variable, zE%f is the pseudo signal, qblf is the dictionary
of basis functions and a; " is the optimal two-norm solution derived in the previous section. Notice
that the two-norm constraint of Eq. (3.20b) corresponds to the satisfaction of Eq. (3.17). Rather than
using the equality constraint of Eq. (3.17), a two-norm error is bounded by the optimal pseudo-norm
solution with € being the user-defined relaxation on two-norm error. This allows one to tradeoff sparsity
with approximation error. Furthermore WP is a diagonal matrix containing a known weight w; for
the j** optimization variable. Initially, w; can be chosen based upon any a priori knowledge about
the structure of f, the form of the least-squares solution or can simply be chosen to be one. In the
subsequent iterations, the value of w; is adapted according to the following formula to penalize the

coefficients that are smaller than a predefined threshold §:

1
wh = . (3.21)

1
i ’ R
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Algorithm 1 Iterative sparse algorithm for model selection

1: function SPARSEID (6,7, &, nbiterationss @'y &, o)
2 Initialize weighting matrix W = Iy

3: Initialize p =0

4 while p < nbjterations do

5

Solve for 67:  min [W7e7|l;  such that [|7'T— 67" 6| <=[[3 - a;Te"||
6" 2 2
6: Update weighting matrix: Wii,i] = %
07 ‘ +n
7 end while
8: Hj = 9];
9: fori=1to N do
10: if 6,[i] < ¢ then
11: 0]‘ [Z] =0
12: Remove column qﬁ f from dictionary (blf
13: end if
14: end for
15: Compute final least-squares solution with updated dictionary: a;T = :'i"lfqu

16: end function

7 is a small number to avoid division by zero. This iterative procedure is repeated unless the computed
coefficients converge within a prescribed tolerance. The solution of this iterative £; minimization problem
provides us a subset of basis functions from an over-complete dictionary, which plays a dominant role in
the underlying unknown dynamics. An optimal pseudo-inverse solution for the coefficients is obtained
for only this subset of basis functions at the end of the procedure. Figure 3.1 illustrates these steps
to obtain the sparse solution. The algorithm is given in Alg. 1. Note that the parameter § acts as a
threshold to separate the active basis function from the nonactive ones. In practice, with normalized
trajectories and independently of the dynamical system considered, it is a relatively safe assumption to
neglect the least dominant basis function, i.e., the basis functions with associated coefficient two to three
orders of magnitude smaller than other basis function coefficients. In this respect, ¢ is usually chosen to
be at least one order of magnitude smaller than the least dominant basis function coefficient. For noisy
input-output data, the value of § is chosen based upon the signal-to-noise ratio to avoid over-fitting the
data. A good discussion on the choice of these hyper parameters on approximation accuracy has been
provided in [72].

3.3.2 Second-Order Systems

Derived from the rates of generalized momenta at the acceleration level, most dynamical systems in
engineering mechanics are characterized by second-order differential equations. If both position and
velocity measurements are available, the second-order differential equation can be reshaped as a first
order differential system and the methodology presented in the last section can be applied. In this
section, the methodology presented in the last section is generalized for the identification of the second
order system with time histories of position level measurements and control input vectors being available.

Consider the following special class of second-order nonlinear dynamical system with nonlinearities being
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Figure 3.1: Hlustration of the iterative procedure to derive a sparse solution for a first order system.
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a function of only position-level state variables:
©(t) = f(x(t)) + Gu(t), (3.22)

where x(t) € R™ represents the state of the system and u(t) € R” the control action at time ¢ and
G € R™ " is the constant-time input influence matrix. Once again, the function f : R™ — R"™ represents
the dynamics constraints that define the equations of motion of the system and our objective is to
identify this nonlinear function from time histories of x(t) and u(t). Following the same development as
before, the unknown nonlinear function f can be expanded in terms of a dictionary of basis functions
and Eq. (3.22) can be re-written as

N
B(t) =) ajéi(x) + Gul(t) (3.23)
j=1

In a quest to determine the analog of Eq. (3.17), the component-wise Laplace transform of the aforemen-

tioned vector equation leads to

N r
X(s) = s”X;(s) — s2i(0) — 23(0) = > a; ;0;(s) + Y GinlUs(s), i=1...n, (3.24)
j=1 k=1

Now, applying the integral operator Zy, to the original signal X?f yields

2X,(s) — s2:(0) — 2(0) <= B;(s) < Us(s)
X¥(g) =T, (XO%(s)) = 22 : AN L NT G, . 3.25
Z(S) /\1( 1(8)) 5+>\1 ;Q’JS+A1 I; ’k5+)\1 ( )

For \; € R, applying the integral operator T, to XM of Eq. (3.25) results in
2X;(s) — sz4(0) — 2;(0)
X6y =7, (XU _ 54 d ¢ 3.26
7 (S) )\2( [ (S)) (8+)\1)(S+)\2) ( )
N r
D;(s) Uk(s)

— Qi + G; 3.27
; s+ M) (s + Ao ]; s+ A1) (s + A2) (3:27)

Notice that A\; = Ay = 0 corresponds to a double integration of the state vector and non-zero values for

A1 and Ao help to accommodate for initial condition errors. Finally, with

P,(s) Uk (s)
PH(s) = —L 2 d UHs)= —2 ) 3.28
j(s) (S+>\1)(S+>\2) an k(s) (S+>\1)(8+)\2) ( )
the Laplace filtered (twice) version of Eq. (3.23) is
N r
X7(s) =Y 0i;@3(s) + > GikU (). (3.29)
j=1 k=1
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Here the superscript ?f corresponds to a signal that has been filtered twice. Adding and subtracting

A1 Xi(s) and A2 X;(s) leads to

(S + )\1)(8 + )\Q)XZ(S) — ()\1 + )\Q)SXl(S) — )\1)\2Xi(8) — (S + )\1).’1%(0) + )\13&‘1(0) — SL’Z(O)

X2(s) -
(S + )\1)(5 + )\2)
~ Xi(s) — (A1 4+ X2) Xi(s) + 2:(0) | M Xy(s) + Mizi(0) — 4(0)
o (S—i-)\g) (8+)\1)(S+/\2)
= XZ(S) + Y;J(S) + }/;,2(8)7
(3.30)
where
=M+ A)X(s) —xi(0) ~MXG(s) + Az (0) — d4(0)
Yia(s) = 1) , Yio(s) = (5T (st ) (3.31)
The inverse Laplace transform of Eq. (3.31) yields the linear ODEs:
i1 (t) = =Aoyi1(t) — (M + A2)zi(t), i,1(0) = —2(0), (3.32)

yi_g(t) = —()\1 + )\2)9172(15) — /\1)\2yi,2(t) + )\%(El(t), yig(O) = 0, yl,z(O) = )\1$(0) — IC(O) (333)
Similarly, the inverse Laplace transforms for @?f and U, ,?f yield the corresponding second-order ODEs:

G (1) = =M + X2) 3 (1) — M3 (1) + 65(x), ¢37(0) =0 ¢37(0)=0, j=1,2,....,N, (3.34)
() = — (A + M) (1) — Mdoud(t) + ur(t), ui(0) =0, w(0)=0 (3.35)

Finally, the inverse Laplace transformation of Eq. (3.30) results in the following linear equation in

unknown coefficient vector, a;:
N T
w3 () = 2i(t) + yin (8) +yia(t) = D aigdi () + Y Gipuil(b). (3.36)
j=1 k=1

This is analogous to Eq. (3.17) for the first order systems and requires only knowledge of z;(t) and ug(?)
to find unknown coefficient vector. One can now employ the iterative £; solution in conjunction with
two-norm minimization to find the appropriate basis functions and their corresponding contributions
from a large dictionary of basis functions as discussed in Section 3.3.1.2. For completeness, this procedure

is generalized to a generic d*" order system in the Appendix.

3.4 Numerical Results

The method described in the previous section to identify governing equations from measurement data is
now validated on three examples of different complexity. The first example corresponds to identification
of nonlinear dynamics for the Duffing oscillator while the second example corresponds to the identification
of the chaotic Lorenz oscillator. The third example corresponds to identification of Newton’s Law of
Gravitation by considering the motion of a satellite in an orbit around the Earth. The first two examples

correspond to chaotic dynamical systems which show some interesting dynamical behavior while the

40



third problem corresponds to the classical central-force field dynamical model. The first order system
formulation presented in Section 3.3.1 is used to identify the unknown dynamics for the first two examples
and the second-order formulation presented in Section 3.3.2 is used for the identification of the central
force field in the third example with position-only measurements. For the central force field identification,

the results are compared with a multi-layer NN as used in our prior work [73,74].

3.4.1 Duffing Oscillator

The first example aims to legitimize the new approach of this paper with a low-pass filter based integral
formulation by comparing it with a pure integral formulation for parameter estimation of the nonlinear
Duffing oscillator. The Duffing oscillator represents a nonlinear spring-mass-damper system and shows
dynamical behaviors of interest for many real engineering applications. The governing equations of

motion for the Duffing oscillator are given as
i+t 4 ax+ B =u (3.37)

where v = 0.2, « = 1, f§ = —1, and u is a random excitation following a Gaussian distribution with
mean 0 and standard deviation 1. With 21 = x and x5 = & (2 is the analogous of a position, x5 of a

velocity), Eq. (3.37) can be re-written as the first-order dynamical system:

(tl = T2 (338&)
Gy = —yao — axy + B+ u (3.38b)

The training dataset for the identification purpose corresponds to response of the system for the initial

condition x(0) = [1.4 0] T. The state and control input data are simulated at a frequency of 200Hz for
10 seconds. Two test cases are considered: the first test case corresponds to perfect measurements while
the second test case corresponds to state measurements being corrupted with zero mean Gaussian white
noise with variance of 10~4. The initial dictionary of basis function consists of all monomials up to
10*" order in x;-z5 space, resulting in a total of 66 basis functions to approximate the unknown system

dynamics:

2 3 .4 .5 6 .7 .8 .9 10 2 3 4 5 6 7 8 9
Rlohq,xz}::{l Tl ®] x] ] T} T] T] Ty T] T] T2 T1T2 TIT2 T{T2 TIT2 T]T2 T{T2 T{T2 T{T2 T)T2

23 mad o3ad 2322 ated 2b22 2$ad 2Ta2 23ed of miad 22ad 2fad 2ted afad
2823 2Tad o3 miah 23l 2Sxf ated ofxd 2Sad xS w2l 22ad 2925 2tad afad
6 6 2.6 3.6 4.6 7 7 .2,7 3.7 .8 8 2.8 9 10

Ty T1Ty TITy TITH TITo Ty T1TH TITy T[Ty Ty T1Ty TIT5 T1TH Tp }.

(3.39)

Two values of A are investigated in order to compare the low-pass filter based integral formulation
regression model (A = 100) with a pure integration based model (A = 0). First, a signal analysis
is performed on the fundamental signals used in both regression models, specifically, their spectral
signatures. Figure 3.2(a) compares the spectral content of the signal that is a direct integration of the
state (A = 0) with the filtered state (A = 100). The signal of interest is ®}5 corresponding to the filtered
signal zo at position 12 in the dictionary. While the direct integration loses some of the spectral content

as denoted by the smooth Fourier transform, ®15 seems to qualitatively share the spectral signature that
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Figure 3.2: Duffing oscillator: Spectral signatures of the state x5 and the input signal u and their filtered
version

looks very similar in shape to Xs(jw) of Figure 3.2(a). Similarly, the spectral content of the filtered
input matches that of the original broad-band white noise excitation, shown in Figure 3.2(b). Since the
amplitude of the spectral content in the integrated signals gets eroded uniformly across all frequencies
because of the smoothness of the integration operation, the pure integration-based model fails to capture
the input-output relationships at higher frequencies. While this model can still be used in parameter
estimation, the magnitude and frequency content of the inputs should be adjusted to improve the
learning process. For the low-pass filter based integral formulation regression model, prior experience of
the analyst in choosing the filter time-constants enables a better control and conditioning of the approxi-
mation problem. Therefore in many signal analysis and adaptive control problems of online learning, the
low-pass filter-based model is preferred to a pure integration-based model. Furthermore, the low-pass

filter automatically rejects high frequency noise in practical applications of interest in systems and control.

The procedure listed in Section 3.3.1 is adopted to find the unknown coefficient vector. While
the least-square solution is a combination of all the 66 basis functions, the sparse solution accurately
identifies the true basis functions participating in the actual dynamics. Tables 3.1 and 3.2 present the
values of the identified coefficients for both the test cases considered. These identified values appear
to be very close to the true ones, which shows the efficacy of the methodology in identifying the true

dynamics of the system. Relative error percentages are calculated as

true — identified y

Relative Error % = 100. (3.40)

true
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Table 3.1: Value of the coefficients for the sparse solution vs. the true coefficients - ; equation

Value Basis # in the True Sparse Sol. Sparse Sol. Rel. Error % Rel. Error %
of A\ Function dictionary | Value (no Noise) (with Noise) (no Noise) (with Noise)
0 T, T2 > T 12 1 0.99999964 1.000014 3.6-107° —1.4-1077
100 T1, T > T2 12 1 0.999999984 0.99999971 1.6-107° 2.9.107°

Table 3.2: Value of the coefficients for the sparse solution vs. the true coefficients - &5 equation

Value Basis # in the True Sparse Sol. Sparse Sol. Rel. Error % Rel. Error %
of A Function dictionary | Value (no Noise) (with Noise) (no Noise) (with Noise)
0 T, T2 > T 2 -1 —1.00000003 —1.000011 —3.0-107¢ —1.1-1073
0 T, T > 5 4 -1 —0.99999996 —0.999988 4.0-10°6 1.2-107%

0 T, T2 > T 12 —0.2 —0.20000003 —0.2000060 —1.5-107° —3.0-1073
100 T1, T2 = T 2 -1 —1.0000004 —1.0000016 —4.0-107° —-1.6-107%
100 T, T2 > 5 4 -1 —0.9999995 —0.9999974 5.0-107° 2.6-1074
100 T1,To > T 12 —0.2 | —0.200000008 —0.1999995 4.0-1076 2.5-107%

Figures 3.3(a) and 3.3(b) display the value of the resulting least-squares and sparse coefficients for
both formulations and cases. Although the least-square solution is the best fit possible in the sense
that the square of the error between the true signal and the identified signal is minimized, this results
in an over-fitting with more basis functions than necessary, particularly true in the presence of noise.
Both the pure integral and filtered formulations perform well when the data are not corrupted with any
noise. As seen in Figure 3.3(b), the integral formulation starts picking up basis functions that do not
appear in the dynamics, resulting in an over-fitting as well. This is because, in addition to the spectral
content of the noise perturbation, the true spectral content of the signal has been smoothed-out making
it difficult for the algorithm to distinguish the true signal from the noise. Figures 3.4(a) and 3.4(c) show
the error resulting in the propagation for both test cases while using the least-square solution for the
identified dynamics. Though the least squares solution provides the optimal value of the coefficients
while minimizing the two-norm error of the measurement data at discrete time instants, the presence
of basis functions that are not participating in the true dynamics leads to over-fitting and hence large
propagation errors. Notice that the pure integration based model leads to an error in propagation of
the same order of magnitude as the low-pass filter based formulation. On the other hand, the resulting
sparse-identified model inherently and automatically balances model complexity with accuracy and
results in small absolute error for both the test cases as seen in Figures 3.4(b) and 3.4(d). Here, the
low-pass filter based formulation is able to preserve the spectral content of the original signals used in
the regression process and differentiate that content from the white noise spectral signature, leading
to the right selection of the basis functions. Finally, Table 3.3 presents the RMS errors for 10 random
initial conditions generated from Gaussian distribution with mean x(0) = {1.4, 0}" and covariance
Py = I,. Once again, as expected, the sparse approximation based identified system leads to minimal
RMS error even in the presence of noise. This better performance of the sparse approximation method

can be attributed to its ability to identify the inherent true dynamics of the system.
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Figure 3.3: Duffing Oscillator: Value of the coefficients for the basis functions

Conclusion on hyper-parameter A: Setting A = 0, the direct integration regression model is obtained

in our approach. The integral equation transformation is a special case of what is implemented in this
paper. The first takeaway is that the integration operation uniformly suppresses the frequency content
in the signals involved in the approximation process, meaning some key spectral content at moderate
frequencies will also be smoothed out by the direct integration. This mandates the direct integration
process to have input signals (for training) with low frequency and larger amplitudes. Of course when
the right-hand side becomes a nonlinear function of the states, this problem becomes compounded.
Another byproduct of this method is that the learning process continues even when the system is turned
off (u = 0) and the filtered integration process preserves the spectral content of the original signals used
in the regression process because a fading memory is implemented in the filtered integration process.

The data are thus exponentially de-weighted and the learning stops as soon as excitation stops.

Table 3.3: Duffing oscillator: RMS Error on 10 random initial conditions
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A=0 A =100
Solution
No Noise Case | Noise Case | No Noise Case | Noise Case
Least-squares 7.41-107% 4.02-1073 8.56 - 10~4 3.41-1073
Sparse 9.77-10~" 3.45-107° 9.02-10~" 1.45-1076
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3.4.2 Lorenz System

The second example corresponds to the chaotic Lorenz oscillator with governing dynamic equations

given as
=0y —a)
j=w(p—z)—y (3.41)
z=uay— Bz

The training data set corresponds to ¢ = 10, p = 28, § = 8/3 and an initial condition of x(0) =
T
[_8 7 27} . The data are recorded at a frequency of 500Hz for 4 seconds. A value of A\; = 10 is

chosen for the low-pass filter. Once again two test cases (with random initial condition, different from
the ones used to generate the training data set) are considered with the first test case corresponding to
perfect measurements and the second test case corresponding to measurements being corrupted by zero
mean Gaussian white noise of variance 10~%. The initial dictionary of basis functions consists of a total

of 56 polynomial basis functions up to degree 5 in state variables.

R _ 2 3 4 _5 2 3 4 2 2 22 32 3 3 23 4 4 5
sle,y, 2] ={1 @ 2° o° 2" 2° y xy 2y 2y 2ty ¥ owy Ty 2Ny oy xyt 2y Yt oy oy

2 3 4 2 3 2 2 2 2 3 3 4 2 2 22
z xz T2 Xz T2 oYz Yz TYZ TYZ Yz xY 2 Yz Yz oayr yz 2 oz a7z

3_ 2 2 2 2 3.2 _3 3 .23

2 2 2.2 2 3 3 2.3 4
2" Yzt owyzt xTyzt Yy 2T wyTzt YTzt 27 w2zt w72 oyt xyzRt Yyt oz

xzt oyt 25}.

(3.42)

Once again, the procedure listed in Section 3.3.1 is used to find the unknown coefficient vector.
Figures 3.5(a) and 3.5(b) show the least squares as well as sparse solution for coefficients for both test
cases. While the sparse solution correctly identifies the correct basis functions, the least-squares fits
non-zero amplitude for most of the basis functions. The iterative procedure converges within 3 iterations
to accurately identify the participating basis functions and drives coefficients of non-participating basis
functions to zero (Figure 3.6). Tables 3.4, 3.5 and 3.6 present the values of the identified coefficients
for both test cases. These identified values appear to be very close to the true ones, which shows the
efficacy of the developed methodology in identifying the true dynamics of the system.

Figures 3.7(a), 3.7(b) and Figures 3.7(c), 3.7(d) shows the error resulting in the propagation for both
test cases while using the least-square as well as sparse identification of inherent dynamics. Observe
that the amplitude of the error is correlated to the dynamics. Regions of the phase space associated
with high velocity (occurs at a lobe switching) relate with larger errors, especially in the presence
of noise (see Figures 3.7(c) and 3.7(d) where there is a lobe switching at ¢ ~ 2s). Finally, Table 3.7

presents the RMS errors for 10 random initial conditions generated from Gaussian distribution with

mean x(0) = [78 7 27} ! and covariance Py = 0.513. From these results, it is clear that the proposed
sparse approximation solution leads to an order of magnitude improvement in state propagation errors.
It should be noted that this approach provides 1074%-10""% error as compared to an accuracy of 0.03%
as reported in [39,40] for the same level of noise but at a higher sampling frequency of 1000Hz. This
better performance of the sparse approximation method can be attributed to its ability to identify the

inherent true dynamics of the system.

46



=
o
© * * -
o + LS Solution
© 1074 * Sparse Solution
-
& 10-4
g 1
= *
7} * *,
S 1074 *« "%, L%
Pt L - T S A
© * Ty * ok ey
g LR AR TR L R
2100« * * bl
= * *
B T T T T T T
=Y 0 10 20 30 40 50
# Basis Functions
=
b=
O - -
@ 10! . « LS Solution
1; * Sparse Solution
| 10—2 4
-
=
@
o 10—5 i
& +*
g +* *** *
”; 071 *** ****** oA
7] * * ** +* - *** ?**
* & * -
Tzu 10711 4 * *h y, * *****#
=
> *
B T T T T T T
< 0 10 20 30 40 50
# Basis Functions
=
i=l
=
* .
a . * + LS Solution
N 107" 1 «  Sparse Solution
B
° 107 1
(%]
u i
E r— *
g lo—? . +* * " ** *
g - * LA A
* * * w *
4= L3 - *
o ¥ LR e
o o V- B R N *
2 10 * * * * N
*
= *
B T T T T T T
< 0 10 20 30 40 50

# Basis Functions

(a) No Noise case

=
=]
v 1 - .
o 10 : # LS Solution
2 * s Sparse Solution
' _ * *
o 10719 *
S * *
£ . * s ** * +*
TR * * *
o 10 * & ¥
w * +* **
H5 re * - * ** *
o * wk *
e 5 e *ow * %
m 1077 *
> * e
_g T T T T T T
= 0 10 20 30 40 50
# Basis Functions
=
§=]
=] - -
@ 101 # LS Solution
= )
2 * . * Sparse Solution
201
= 107! 4 *
x & - ko
o *
5 R
_3 - L 3 **
8 10 +* * - **
] LA T S R L S
g 10—5 m - * * ** L 4
s - *
= **
_UQ'] T T T T T T
< 0 10 20 30 40 50
# Basis Functions
=
o
= E|
§ 100 ] ** . ¥ * LS Solution
= ] & ¥ + * Sparse Solution
N 10-1 1 - - *
= ] & ¥ a * ¥ .
g 10725 . ST
b= ] v *
T 19-34 * *
g 1073 N - * oy, .
o ]
S 107% 3
g ; * - o * - * *** **
T 107 1 * * *
= ; £
_Uoi T T T T T T
< 0 10 20 30 40 50

# Basis Functions

(b) Noise case

Figure 3.5: Lorenz oscillator: Value of the coefficients for the basis functions

Table 3.4: Value of the coefficients for the sparse solution vs. the true coefficients - x direction

Basis # in the True Sparse Sol. Sparse Sol. Rel. Error % | Rel. Error %
Function | dictionary | Value (no Noise) (with Noise) (no Noise) (with Noise)
T,Y, 2T 2 —10 —10.00000000035 —9.9999949 —3.54-107° 5.10- 1077
T,Y,2 Y 7 10 10.00000000030 10.0000333 —3.02-107° —3.33-107¢
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Figure 3.6: Lorenz oscillator: Evolution of the absolute value of the coefficients from the sparse
approximation solution

Table 3.5: Value of the coefficients for the sparse solution vs. the true coefficients - y direction

Basis # in the True Sparse Sol. Sparse Sol. Rel. Error % | Rel. Error %
Function dictionary | Value (no Noise) (with Noise) (no Noise) (with Noise)
ZT,Y, 2 2 28 28.000000038 28.0008596 —1.34-1077 -3.07-107°
T,Y,2 Y 7 -1 1.0000000053 —1.0002722 —5.33-10~7 —2.72-1074
T,Y,z2 T2 23 -1 —1.0000000012 —1.0000214 —1.19-1077 —2.14-107°
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Table 3.6: Value of the coefficients for the sparse solution vs. the true coefficients - z direction

Basis # in the True Sparse Sol. Sparse Sol. Rel. Error % | Rel. Error %
Function dictionary | Value (no Noise) (with Noise) (no Noise) (with Noise)
T,Y, 2 — TY 8 1 1.00000000058 0.9999914 —5.81-1078 8.60- 10~
T,Y, 2 2 22 —8/3 2.66666666776 —2.6666329 —4.11-10"8 1.27-107%
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Figure 3.7: Lorenz oscillator: Norm of the relative error for different scenarios

3.4.3 Two-Body Keplerian Dynamics

The third example corresponds to the identification of the inverse square Law of Gravitation from the
observation data corresponding to a satellite orbiting the Earth. Kepler’s Laws, Newton’s Laws of
motion and Newton’s Gravitational Law were developed with critical reliance on observational data.
Based on Giuseppe Piazzi’s observations of Ceres in 1801, Gauss calculated the orbit of Ceres from the
observation data for Ceres using the theory of least squares and initiated the premises of data driven
models. In this section, the classical problem of identifying the central force field from position-only
observation data is considered to validate the developed approach. In addition, the results from the
methods developed in this paper are compared with the same analysis performed with a multi-layered

NN based approach. Previous work conducted in this respect [73] and [74] will allow us to precisely

compare the machine learning based approach with the sparse approximation method.

Table 3.7: Lorenz problem: RMS Error on 10 random initial conditions

Solution No Noise Case | Noise Case
Least-squares 9.369 - 10~6 1.418
Sparse 1.704-1077 3.117-1073
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Table 3.8: Orbital elements for the four considered orbits of the training data set

Orbital elements ISS Molniya | Polar GEO
Semi-major axis a [m| | 6789500 26600000 | 9240000 | 42164000
Eccentricity e 0.0001912 | 0.74 0.00025 | O
Inclination ¢ [deg] 51.6414 63.4 89.8 0.01
RAAN Q [deg] 259.0449 128 120 120

Arg. of perigee w [deg] | 182.9557 | 270 360 360

True anomaly v [deg| 0 0 0 0

3.4.3.1 The Two-Body Problem in Cartesian Coordinates

Let 1 and 75 be the position vector of two bodies, and m; and msy be their respective mass. If
T = r9 — 11 is the relative position vector between the two bodies, the dynamics of the two-body problem

are given by

= —T%r, (3.43)

with g = G(mq + ms2) and G is the universal gravitational constant. In an inertial reference frame and
using Cartesian coordinates, with r = {z, y, Z}T and r = \/2? + y% 4 22, Eq. (6.13) can be written as

T x T
Firmioef |yl e |l =-51y] (3.44)
r
z Z z

The idea is to identify the governing equations of the function f introduced in Eq. (3.44) without any a
priori knowledge about its structure and therefore to determinate if the resulting identified model has

the ability to identify the underlying dynamics embedded in some data set.

3.4.3.2 Training Set & Dictionary of Basis Functions

Four different types of orbits are selected to build the training set: a low Earth orbit (LEO), a Molniya
orbit, a polar orbit and a geo-synchronous orbit. Table 3.8 summarizes their orbital elements. The
training data set corresponds to a fraction of a revolution on these orbits: range data are recorded every
one second for 1.2 hours for the ISS, and 2 hours for the remaining three. Canonical units are used in
this example, the length unit (LU) is chosen to be the radius of the Earth, the time unit (TU) is chosen
such that the gravitational parameter pu = 1.

To construct the initial dictionary, the set Rs[r] consisting of 20 “monomials" up to order 3 in z, y

and z is defined:

2 2

Rg[r]:{l z 2?23y xy 2%y v oay? vz oz 2z yz wyz vz 2P a2 y2? 23}. (3.45)

Furthermore, sets Rs 1[r, 7], R32[r,r] and Rg 3[r,r| are defined to consist of the aforementioned mono-

50



*
* -
* +
0.0 4 -Wm--- %.Mmt.%ﬁﬁ;ﬂ.wt&
= ¥ o - . * b *
= * * *
k5]
£ 0.2+ *
© *
» *
5 —0.4 4
S
£
1]
S —0.6
“
o
o
2
g —-0.81
* LS Solution
~1.04 . *  Sparse Solution
0 10 20 30 40 50 60 70 80
# Basis Functions
0.2 -
* P T "‘"’
< 0.0 -:htm- -ﬂim-.:;.,-r-.ﬂu Iﬂw-;“;‘-r':;;*t.t.i; ..Wt
= L *
o *
v
5 —0.21
>
[ *
]
o —0.4 1
(5]
] *
L
o
Y —0.6
]
o
E]
T -084
* LS Solution
~1.01 . * Sparse Solution
T T T T T T T T T
0 10 20 30 40 50 60 70 80
# Basis Functions
0.2 N
*
LARE I J
- - * x ke
0.0 Vinesgightittacipaapingseplystoasiopeiegbossse Lyslsagiymeseilostosnese
s . * 3 '@**tw *‘#"ﬂ'ﬁﬁ*
= o
o *
5 -0.2 1
N
,é *
3 —0.4 -
(v]
E *
Ly
[=]
S 0.6
w“
o
o
=2
8 0.5
* LS Solution
_1.04 * Sparse Solution .
0 10 20 30 40 50 60 70 80

+# Basis Functions

Figure 3.8: Two Body Problem: Value of the coefficients for the basis functions

mials divided by 7, r? and 73, i.e.,
Rs1[r,r] = Ra[r]/r, Rso[r,r] =R [r] /72, Rss[r,r] = Rs[r]/r>. (3.46)

This class of basis functions is motivated by the general 1/r" forms that are often seen in force interactions,
especially for coservative force fields including gravity. The final dictionary consists of a total of 80 basis

functions constructed as the union of R3[r], Rs 1[r, ], Rs 2[r, ] and Rs 3[r, 7], i.e.,

D = Rg [T‘} U R371[7’, T] U Rgg[’l’, 7’] U Rg,g[r, ’I"]. (347)
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Table 3.9: Value of the coefficients for the sparse solution vs. the true coefficients

Basis Function | # in the dictionary | True Value | Relative Error %
e x/rd 25 -1 2.45-10711
r—y/r 34 -1 —7.21-10712
T z/r3 52 -1 -1.93-10~ 1

The second-order formulation described in Section 3.3.2 is used to identify the inherent true central
force field dynamics, with coefficients of the low-pass filters chosen to be \; = Ay = 10. Figure 3.8
presents the coefficients found using the least-squares solution and the coefficients from the sparse
approximation method. Once again the least squares method fails to clearly identify the true participating
basis functions. Instead, a non-minimal combination of basis functions in the dictionary is selected to
minimize the mean squared error. On the contrary, the sparse approximation approach clearly identifies
the one basis function corresponding to inverse square law as reported in Table 3.9. These converged
coefficients agree with the true value of y with almost machine precision. Figure 3.9 shows the error
resulting in the propagation on the training orbits using the least-square and sparse method identified
dynamics. The error in the propagation is around 10~* LU depending on the type of orbit for the
least-squares method while an average absolute error for sparse approximation is on the order of 10713
LU. The final error resulting from the least-squares solution is not satisfactory due to the excitation of

basis functions that are not participating in the true dynamics.

3.4.3.3 Comparison with the Deep Learning Approach

To show the relative performance of the sparse learning methodology presented in this paper, a multi-layer
NN learning-based approach is also considered. A NN can be seen as a complex nonlinear mapping
between some given input and output data. Mathematically speaking, if £ and F' are two topological

spaces, a NN is a mapping M : E — F' such that
M:x—y=M(x), (3.48)

where @ is the input and y the output of the NN. The mapping M is generally nonlinear and a function
of a set of parameters a:

M = Ma. (3.49)

Along with the specific structure of the mapping M, the set of parameters a defines a NN uniquely.
The notation a is not chosen randomly: this set of parameters is analogous to the matrix of coeflicients

a defined Eq. (3.5). These unknown parameters are found by minimizing the loss function
1 & 1 N
L(Mq,S) = ZMSE ) MSE(R) = — > (ye(i) = 5(0)”* = — llyy — Gull3- (3.50)
i=1

where g, € R™ represents the output of the network, i.e., ¥, = Mg (k). and the y, € R™ represent
the true measurements for the output vector. Figure 3.10 shows that how the solution from the NN and

the true solution are generated to compute the Loss function to find the unknown network parameters c.
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Figure 3.9: Two-body problem: Absolute relative error for radial component

Unfortunately, the resulting optimization is nonlinear in nature with multiple local minima. In our prior
work [73,74], an extensive study is conducted to understand the learning capabilities of NNs to identify
the Keplerian dynamics. The goal is to examine whether the specific structure of NNs can learn the
inherent dynamics of the two-body problem and examine whether a NN trained model can reproduce the
well-known characteristics of Keplerian dynamics such as conservation of energy and angular momentum.
Several test cases are considered to assess the learning capability of the converged NN. Three different
network architectures: Feed-Forward, Residual and Deep Residual are considered in addition to studying
the impact of the size of training data size on the network approximation. Table 3.10 summarizes the
best results on approximating the Keplerian motion using different architectures of NN along with the
results obtained with the least squares and sparse approximation in this work. It should be mentioned
that the training data set for the NN is much larger than the training data set for the least-squares and

sparse approximation. The training data set for the NN approximation consists of 20 random orbits with
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Figure 3.10: The computation of Loss Function for NN approximation: the upper part illustrates how
the NN is used to approximate the dynamics along with the Runge-Kutta fixed-size step algorithm
while the bottom part is the classical generation of the true solution with the known dynamics and a
Dormand-Prince integration algorithm.

multiple revolutions. It has been shown that the three structures are able to provide accurate results
for orbit prediction considering a large data set. Although it seems that the NN-learned model can be
trained to approximate the Keplerian dynamics to good accuracy, the complexity of the learned model
is an issue. The resulting NN model is a profligate model for the Keplerian dynamics as compared to
Newton’s Law of Gravitation. While the DeepResNet structure considered provides the most accurate
results, the ResNet architecture shows very similar performance with fewer parameters. However, none of
these architectures is able to identify the parsimonious structure of the governing dynamics as identified
by the sparse approximation algorithm. This is because methods like NN improve the approximation
accuracy by increasing the complexity of the model (defined by the parameters of the model) while fixing
the basic building blocks or the basis function whereas the developed methodology along with other

variants such as [45] improves the approximation capability by judiciously selecting the basis functions.

Table 3.10: Comparison of different methods to approximate the Keplerian dynamics

Method Feed-Forward NN | Residual NN | Deep Residual NN | Least-Squares Sparse
Average error [LU] 7-1078 4-1078 3-.1078 2.1074 4-10713
Number of parameters 2070 480 7720 80 3

3.5 Conclusion

This chapter has presented a convex optimization based approach for nonlinear system identification from
state and control input time histories. The proposed methodology expands the unknown nonlinearities
in system dynamics in terms of basis functions consisting of monomials of various orders. An integral
form of the underlying nonlinear ordinary differential equations is considered to solve for the unknown

coeflicients for the basis functions. While conventional methods for nonlinear system identification rely
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on improving the approximation accuracy by increasing the number of basis functions and hence the
parameters of the model, the developed approach exploits recent advances in sparse approximation to
automatically select the appropriate structure for the inherent nonlinearities. Hence, the developed
methodology chooses building blocks for accurate and efficient construction of the input-output map.
Though the main ideas are developed for a first order system to identify the input-output map from
the time histories for full state (i.e., position and velocity) as well as control input vector, an extension
is developed for the identification of second order systems where nonlinearities are a function of only
position-level state variables from time histories of only position-level state variables and control input.
Three numerical examples are presented to provide evidence in support of the efficacy of the proposed
approach. The unique agreement in correctly identifying the true dynamics for all the three problems
provides a strong basis for optimism in demonstrating the utility of the approach for identifying the
inherent physics-based map from given data. The next chapter will propose a robust method for the
identification of a time varying Koopman operator in the discrete-time domain based on a subspace
identification method. In a similar manner to the framework presented in this chapter, this will lead to

the identification of the most prevalent modes activated in the collected data.
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Chapter 4
Discrete- Time Koopman Oper-
ator

4.1 Introduction

While the previous chapter proposed a method to answer the question on how to derive a representation
of a continuous-time Koopman operator by selecting an optimal number of basis functions (in terms of
an £ — 1 norm minimization problem), the purpose of this chapter is to deliver an automatic algorithm
to identify a discrete-time Koopman operator using subspace methods from data only. In the Koopman
framework, given the time histories of X, we are able to construct a minimal discrete-time state-space

realization:

Zk+1 = Azk (41)
X = Czk (4.2)

where X, is the estimated measurement vector. Though the Koopman operator is in theory of infinite
dimension, the measurement vector x is truncated to finite dimension N >> n for practical implemen-
tation. In other Koopman operator related publications, z; is assumed to be a N-dimensional hidden
state vector corresponding to the Koopman dynamics, hence of dimension equal to the dimension of the
lifted space. However, one can also estimate the dimension of zj, as part of the identification process.
X is the estimated measurement vector and the estimate for the state of the nonlinear system, can be
extracted from the first n components of x;,. The observable pair of unknown system matrices (A4, C) is
found such that the norm of the measurement error ||x; — X/l is minimized. As we’ve explained in this
section, conventional subspace decomposition methods such as the Eigensystem Realization Algorithm
(ERA) [8,13,21] or Dynamic Mode Decomposition (DMD) [20,23,75] provide an observable realizations
for the system matrices (A, C'), hence performing a linearization about a single point of the dynamical
system in the lifted space. In earlier work [54-58|, it is shown that the state prediction error improves
as the dimension of the lifted space, IV is increased. Indeed the resulting linear operator is a local
approximator of the nonlinear dynamical system valid in the neighborhood of a nominal point and the
domain of validity of this local linear approximation improves as the dimension of the lifting space

is increased or equivalently the accuracy of the Koopman operator improves as the dimension of the
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operator (or, equivalently, the related lifted space) is increased. Generally, N needs to be much larger
than state dimension n for the Koopman operator to provide a good prediction of the system states. In
other words, one may need a very large dimensional lifting space to accurately capture the flow of the

underlying nonlinear system.

Moving forward, the work presented in the next section aims to extend subspace identification
methods for the identification of a time varying Koopman operator. Particularly, the linearization of
the nonlinear flow about a nominal trajectory of the nonlinear system rather than a nominal point is
presented as an alternative to improve the validity region of the Koopman operator and curtails the
dimension of the lifting space. The linearization about a nominal trajectory leads to a linear time-varying
(LTV) system as opposed to a linear time-invariant (LTI) system for the conventional Koopman operator.
Instead, a time-varying Koopman operator (TVKO) is developed as an alternate means to increase
the prediction accuracy for a fixed dimension of the lifted space. Three numerical simulations are
considered to showcase the utility of this newly developed time-varying Koopman operator in predicting

the response of a nonlinear system.

4.2 Time-Varying Koopman Operator (TVKO)

The algorithm developed in this section arises from a perspective of generalizing the classical Ho-Kalman
approach with OKID/ERA to the case of time-varying systems. It is shown that the generalization thus
made enables the identification of time varying plant models that are in arbitrary coordinate systems at
each time step. Furthermore, the coordinate systems at successive time steps are compatible with one

another and makes the model sequences realized, useful in state propagation.

Earliest efforts in the development of methods for linear time-varying systems involved recursive and
fast implementations of time invariant methods by exploring structural properties of the input/output
realizations. The classic paper by Chu et. al, exploring the displacement structure in the Hankel
matrices is representative of the efforts of this nature. Subsequently, significant results were obtained by
Shokoohi and Silverman [24] and Dewilde and Van der Veen [25], that generalized several concepts in
the classical linear time invariant system theory consistently. The idea of repeated experiments have
been introduced [26,27] and presented as practical methods to realize the conceptual state-space model
identification strategies. However, LTV systems exhibit distinct properties, as compared to the shift
invariance exhibited by LTI systems. All the subspace methods for LTI system identification exploit the
fact that an infinity of system realizations exist and actually share the same Markov parameters and
the eigenvalues of the state transition matrix. However, no such property exists for LTV systems and
the lack of similarity transformations handicaps the application of conventional subspace methods to
identify LTV systems. In our earlier work [28,29], it is shown that there actually exists special reference
frames, in which the identified models are similar to the true model, i.e., state transition matrices share
the same eigenvalues, and the transformations applied allows one to compare similar state matrices.
This forms the basis for spectral characterization of time-varying systems and the resulting algorithm to
identify the system matrices is known as the time-varying eigensystem realization algorithm (TVERA).
This section summarizes the key ideas of the TVERA algorithm and one should refer to [28] for more
details on TVERA.
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4.2.1 Introduction on Linear Discrete-Time Time-Varying State-Space Models

A linear discrete-time varying system is given by

Tpt1 = ATy + Brug (4.3a)

Yi, = Cri + Diuy, (4.3b)

together with an initial state vector xo, where x; € R", u; € R" and y, € R™ are the state, control
input and output vectors respectively, k > 0. Similarly to the time invariant case, the time-varying (non
constant) matrices Ay, By, Cx and Dy with appropriate dimensions represent the internal operation of
the linear system, and are used to determine the system’s response to any input. The solution of the

difference equation, given in Eq. (D.1) in the time varying case, is now given by

k=1
xp = Proxo + Z Dy 11 B, (4.4a)
i=0
k-1
Y = CrPr oo + Z Cy @k it1Biu; + Dyu(k), (4.4b)
i=0

where the state transition matrix is defined in terms of its components by

Ap_1Ap_o. .. Ako for k > ko,
Prro =9 I for k = ko, (4.5)
undefined for k < kg.

This state transition matrix is associated with the homogeneous part of Eq. (D.2) (ux = 0, initial

condition response). By defining the generalized Markov parameters (or pulse response matrix) as

Ck(bk77;+1Bi fori<k— 1,
hii=<q CpBr_1 fori=Fk—1, (4.6)

0 fori>k—1,

the input-output relationship in terms of this two index coefficients is written as

k-1
y(k) = Cp Py oo + Z hiiw; + Dyuy,. (4.7)
=0

For time-invariant systems, hy ; depends on k£ — i only.

4.2.2 Time-Varying Eigensystem Realization Algorithm (TVERA)

Similarly to the time-invariant case, Hankel matrices will play a major role during the identification

process. The classical Hankel matrix becomes a generalized Hankel matrix dependent of time, populated
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using the generalized Markov parameters:

R k—1 P j—2 e P k—q
kg1 k—1 hitik—2 -+ DPryik—g
HPY = =0 RY (4.8)
|Pbtp-1h-1 Phip-1k—2 o Pkipo1kq]
with the time varying observability and controllability matrices defined as
Ck
Cry14k
Ogﬂ) — Ck+2Ak+1Ak , (49&)
| Crtp-1Aktp—2 - Ak
Réq) = |Br ApBr—1 ArAr_1Br_o -+ Ap...Ap_gioBr_qs1]- (4.9b)

Parameters p and ¢ are chosen such that the generalized Hankel matrix retains the rank n, the true
state dimension. Indeed, if pm > n and gr > n, matrices R,(Cq) and O,(cp ) are of rank maximum n. If
the system is controllable and observable, the block matrices Rfcq) and Off ) are of rank n and so is
H ,(cp ‘) Again, identifying the number of dominant singular values of the Hankel matrix will provide an
indication about the unknown order of the reduced model to be identified. Differing ranks are possible
for this generalized time-varying Hankel matrix H ,(Cp D at every time step for the variable state dimension
problem. However, it is assumed that the state dimension does not change with the time index and
it is not difficult to see that this assumption can be relaxed, given some adjustments. We retain the
assumption owing to our focus on mechanical systems, in which the connection between physical degrees
of freedom and the number of state variables allows us to hold the dimensionality of the state space
fixed throughout the time interval of interest. Note that the definition of the generalized Hankel matrix
above is only valid for k£ > ¢. In practical experiments, inputs cannot be applied at negative time index

and generalized Markov parameters have no meaningful sense for negative indexes.

(p,q)

As for the ERA in the time-invariant case, using the singular value decomposition of H "™, we can
write
-

HP — U3, V] = {Uém U}<€o>} k o fo)T (4.10a)

0o X Vv,

T T
=usMvy 4 ulsPvY (4.10b)

~0
-

~UMsmym (4.10¢)
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at a given time step k. In terms of the corresponding controllability and observability matrices,

. o —ymsm?
Hpo v —opr, - | O ZUNEE )
q n n
R~ =% Vi
The same procedure at time step k& 4+ 1 will lead to
(p) (n) 5(n) 1/2
s n n n T 0k+1 = Uk:JrIZkJrl
Hl(ciql) = U1(<+)121(c+)1V§c+)1 = Ol(ﬁlecq) = (@) m) Y2 ) T - (4.12)
R, =3 Vg
Considering the block shifted controllability matrix
R = (4B, AAv B Ajpoo Ay—gin B (4.13a)
k= |ArDE—1 kAg—1Dk—2 - Ap... Ap_g41D8k—q :
— AR, (4.13b)
and block shifted observability matrix
Cri1As
Crt2Ai+14%
oP'" = - 0;9211% (4.14)
_Ok+p_1Ak+p_2 . Ak_
we get
Ay=0f), o = R R, (415)

as an estimate for the identified time-varying discrete system transition matrix. Moreover, the first r

columns of R,(Cq) form an estimate for the identified control influence matrix,

B, =R\"E,. (4.16)
Similarly, the first m rows of Ogcp ) give an estimate for the identified output influence matrix is

Cv=E] 0", (4.17)

4.2.3 Calculation of Discrete-Time Varying Realizations for the First Few Time
Steps

As explained before, the definition of the generalized Hankel matrix is only valid for £ > q. The
methodology detailed in the previous section can only be employed once a full rank Hankel matrix can
be populated. This section presents a method for computing the first few time step models using an

additional set of experimental data, the free response experiments. The output data of N free response
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experiments (also known as the zero input response) are given by

R el
N e (4.18)
_yk#-ip—l yk#-ip—l e yk#—&]-\;—l_
where X ,(CN) is a state variable ensemble at time k:
XM = ok, 02 ok, 00z - B(k,0)2tV| e RV, (4.19)
As for the procedure when k > ¢, using the singular value decomposition of H ,(f)’N), we can write

.
=M o0 | |vY

= (P N) n
H, " =U,%,V, = [U;C ) U;CO)} © T (4:202)
o =V |v
T T
=u'sMv L uPsPvY (4.20b)
—_————
~0
.
~uMsrym (4.20c)

at a given time step k. In terms of the corresponding observability and state variable ensemble matrices,

= (p,V) T oV = U(’”L)El(n)l/2
gy sy’ — o®x ™ - k PO (4.21)
XN _ 2y m)
N k
The same procedure at time step k& 4+ 1 will lead to
(p) (n) s2(n) /2
(V) n) (n n) T N Ot =U 0
Hyy = U§c+)12§§+)1V1(c+)1 = Ol(lexl(c-s-)l = 1/2 T (4.22)

N n n
Xl(c+)1 = El(é—i-)l V1(<+)1

Note that the state variable ensemble matrix X ,(ij_)l at time k + 1 is related to the state variable ensemble

matrix X EQN) at time k by

xN) = a4,xV (4.23)
which leads to the estimate
R -1
Ay =xDxV (4.24)
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for the time-varying state matrix at times k = 0,1,...,g — 1. The calculation of the corresponding Cy is

accomplished by setting
Cv=E] 0", (4.25)

Finally, the estimate for By, is calculated by forming the partial Hankel matrices for the first few time
steps (k=0,1,...,¢—1):

Pkt k Cr+1Bg
e I R e (126)
kapk| | CripArgp—1- - A1 B
leading to
By =0®,'mHPY. (4.27)

This procedure is actually the one we use to identify matrices A, and Cy, in case of initial condition

response experiments only (Eq. (4.18) to Eq. (4.25)).

In the presence of an input, the model matrices determined Eq. (D.32), Eq. (D.33) and Eq. (D.35)
are of little use in practice. This is because of the fact that the first few models developed in this
manner (k < ¢) are in a totally different coordinate system, derived from the free response singular
value decomposition. Models for k > ¢ are in the coordinate system derived from the forced response
singular value decomposition. Hence, one cannot use the models thus developed in state propagation
because they have a jump discontinuity at the time step k = ¢ in their coordinate systems. The first
option to alleviate this issue is to apply the coordinate transformation theory developed in the previous

section. The second option is to estimate the state at time k£ = q. This approach is explained next.

4.2.4 Estimation of the State Variable at Any Time-Step

Writing the input and output from a general k** time step, for p more time steps, one obtain a set of

equations that can be written in a matrix form as

g =0z, + Ay (4.28)
with
Y U
Yy Uk+1
Y= e ) u = i ) (4.29)
_yk:-l-p—l_ _uk+p71_
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and

Dy,
Ck 1Bk Dk 1
A, = " " . (4.30)
| Crtp1Aktp-2--- B Crip1Akip-2-- Betr -+ Digp]

Eq. (D.36) can be solved using the least-squares solution:
——O(p)Tf—Af 4.31
Ty vy XTI (4.31)

This least-squares procedure can be applied at any time step k (especially at k = 0 to identify the initial

condition) and the same formulation is valid for time-invariant systems using constant-time matrices.

4.3 Numerical Examples

This section considers three problems of varying complexity to showcase the utility of a time-varying
Koopman operator (TVKO) in predicting the response of a nonlinear system. For all numerical
simulations, polynomial basis functions are considered for the lifting process and a time-invariant
Koopman operator (TIKO) is also identified to showcase the accuracy gained for the same degree
of lifting. Depending on the dimensionality of the problem, up to six different cases are considered
corresponding to different order of lifting functions to approximate the true infinite-dimensional time-
invariant and time-varying Koopman operators. The goal is to compare the pure prediction capabilities
of the operators and the higher-order state transition tensors with limited training data. Note that
this is a pure initial condition response: testing points are not included in the training data and no
true measurement of the testing trajectory is included during the prediction phase. In reality, when
a true measurement is available, it is wise to reset the predicted trajectory and to depart again from
that last data point. In this Chapter, we do not attempt to reinitialize the predicted trajectory; rather,
we compare the capabilities of the different methods and discuss how one would use these different

approaches for a pure prediction of an initial condition response.

4.3.1 Unforced Duffing

The first example corresponds to the nonlinear oscillator known as the Duffing oscillator governed by

the following equations

il = T, (4.32&)
Ty = —O1y — axy — B (4.32b)

Two sets of parameters are considered corresponding to two different energy potentials, with no damping:

Single-well potential: o« =1,5=1,0 =0, (4.33a)
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Double-well potential: o« = —1,8=4,0 =0. (4.33b)

Figure 4.1 presents a summary of the learning process and the identification results. Three plots show
the identification capabilities of TIKO, TVKO and the propagation achieved using higher-order state
transition tensors (HOSTT). The training sample set is a Gaussian distribution around the nominal
with covariance 0.04I5. The RMSE graph at the bottom shows how the prediction errors of the different
operators compare to each other. Each point on that graph corresponds to the average RMSE of 20
propagated testing trajectories with the same initial ||dxg||, sampled uniformly around the nominal. For
this particular example, the dynamics are well behaved with one equilibrium at z = 0 which allows
for larger propagation times (20 seconds in this case) and larger initial perturbation, for training and
testing. Table 4.1 explicitly gives the RMS errors for the largest initial deviation of ||0x¢|| = 0.1.
From these plots, it is clear that the accuracy of the TVKO and HOSTT operators increase with the
lifting degree. While the accuracy in propagation resulting from smaller perturbations is better with
HOSTT, the TVKO yields better prediction capabilities for larger initial ||dxo||. We recall that HOSTT
are calculated using true dynamical information about higher-order sensitivities, whereas TVKO only
uses data from training trajectories.

The graph that shows the evolution of the RMS error for TIKO and TVKO describes how the approxi-
mation error is growing over time. It is expected that the longer the propagation time, the larger the
error, which is clearly discernible from the graph. A pure prediction of 20 seconds at 50 Hz means that
the operator is expected to perform 1000 prediction steps without seeing any true measurement from
the testing trajectory. Depending on the desired prediction accuracy, these graphs would indicate at

what time step it is relevant to include a data point from the true trajectory.

Figure 4.2 presents the same kind of summary for the double-well Duffing oscillator. Training is
performed with 200 initial conditions propagated for 10 seconds at 50 Hz. In this example, the nonlinear
term in the dynamics plays a more important role than in the previous case. Again, the prediction
accuracy of the TVKO and HOSTT operators increase with the lifting degree and TVKO yields better
accuracy for larger initial perturbations. The TIKO is challenged on this case and as prediction error
builds up as time goes on, the predicted trajectory starts diverging after approximately 2 seconds of
pure prediction. This is distinctly visible when looking at the evolution of the RMS error. For TIKO
and TVKO, the prediction accuracy clearly increases when the order of the operator increases. Table

4.2 provides the RMS errors for the largest initial deviation of ||dx|| = 0.1.

Additionally, eigenvalues of the Koopman operator of order 4 are compared with the ones obtained
from building a similar operator using the elements ®; ;, j,;,;, of the corresponding 5 dimensional HOSTT
tensor (for a corresponding order 4). Figure 4.3 shows the evolution of these eigenvalues at different
times along the nominal trajectory. Clearly these eigenvalues do not completely match; however, they
happen to be close for earlier times. As time increases, more significant differences can be observed for
the two operators. This is mainly explained by the fact that the higher-order state-transition tensors are
a local linearization at each time step whereas the Koopman operator is calculated from using p time

steps along the nominal trajectory.
Table 4.1: Single-well Duffing: RMS error for pure prediction trajectories for ||dxq|| = 0.1
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[|0xo|| = 0.1 | Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

HOSTT |45-1072 | 1.1-1072 | 32-1073 | 1.1-1073 | N/A N/A

TIKO 2.0-107* [ 2.0-107* | 20-107* | 1.9-107* | 1.9-107% | 1.9- 107!

TVKO 5.7-1072 1 1.0-1072 | 2.0-1073 | 46-107* | 92-107° | 2.5-107°

Table 4.2: Double-well Duffing: RMS error for pure prediction trajectories for ||dao|| = 0.1
[|6xo]| = 0.1 | Order 1 Order 2 | Order 3 | Order 4 | Order 5 | Order 6

HOSTT |24-107!'|27-107!'|33-107! |39-107! N/A N/A

TIKO 3.2-1071 1.8-10° Diverge Diverge Diverge Diverge

TVKO 25-107' | 1.3-107* | 8.0-1072 | 6.9-1072 | 5.4-10"2 | 5.2-10~2

4.3.2 Lorenz Oscillator

The second example corresponds to the Lorenz oscillator with governing dynamic equations given as

& =zxo(y—x), (4.34a)
y=z(p—2)—vy, (4.34b)
Z=uxy— Bz. (4.34c¢)

As a more chaotic example, a pure initial condition response prediction is more challenging. For
training, 240 trajectories are generated from a Gausian distribution with covariance 0.02/5 around the
nominal, recorded at a frequency of 50 Hz for 4 seconds. Figure 4.4 shows the identification results.
Three plots correspond to the identification capabilities of TIKO, TVKO and the propagation achieved
using higher-order state transition tensors (HOSTT). The RMSE graph shows how the prediction errors
of the different operators compare to each other with each point corresponding to the average RMSE of
16 propagated testing trajectories with the same initial ||dxo||, sampled uniformly around the nominal.
Finally, table 4.3 provides the numerical values of the RMS errors for the largest initial deviation of
[|0x0|] = 0.1.

Similarly as before, the accuracy of the TVKO and HOSTT operators increase with the lifting degree
and the TVKO yields better prediction capabilities for larger initial ||dxg||. In this example, the TIKO
is not able to sustain enough prediction accuracy for the 4 seconds time span considered. The graph
showing the evolution of the RMS error for TIKO shows that after 1 second (or 50 time steps), the
accumulated error becomes too significant. The same graph for TVKO shows that rapid changes in
dynamics around 1 and 2 seconds (switching lobes) has the effect of rapidly increasing the prediction

error.

Table 4.3: Lorenz oscillator: RMS error for pure prediction trajectories for ||dxg|| = 0.1

65



Dynamics - Duffing oscillator
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Figure 4.1: Single-well Duffing
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Dynamics - Duffing oscillator
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Figure 4.2: Double-well Duffing
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Figure 4.3: Eigenvalues of the TVKO operator and reconstructed HOSTT operator at different times

[|0xo|| = 0.1 | Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

HOSTT | 35-107' | 88-1072 | 26-10"2 | 7.6-1073 | N/A N/A

TIKO 1.2-10° 1.2-10° 1.2-10° Diverge Diverge Diverge

TVKO 34-107* | 6.3-1072 | 2.6-1072 | 59-1073 | 1.0-1073 | 6.5-10~*

These two examples of the Duffing oscillator show an additional compelling fact about the difference
between a linear time-invariant Koopman operator (TIKO) and its time-varying counterpart (TVKO).
For the case with one equilibrium, the linearization domain is situated around the equilibrium at & = 0
and the Koopman approximation is valid in this region. As long as the predicted trajectory lies in this
region, the approximation will remain fairly stable even though the error is slowly compounding at each

time step (see Figure 4.1). Especially, the TIKO is defined uniquely and only valid in this specific region.
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Dynamics - Lorenz oscillator
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Figure 4.4: Lorenz oscillator
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In the case of the double-well oscillator, it is possible to highlight two distinct (and disjoint) linearization
domains around the two equilibria. As a linear operator, the TIKO cannot predict the trajectory of
this two equilbria system (there is no homeomorphic coordinate transformation that captures the global
dynamics of the Duffing dynamics with a linear operator, since any such linear operator has either one
fixed point at the origin, or a subspace of infinitely many fixed points). Switching from one equilibrium
to the other, the TIKO quickly fails in predicting the state of the system as the error grows exponentially
due to reaching the limits of the linearization domain. This is also explained graphically in [76]. This is
clearly seen in Figure 4.2 where the predicted trajectory starting from the right linearization domain
fail to reach the left one. On the other hand, since the TVKO is a local linearization at each time-step
along the nominal trajectory, it is able to seamlessly transition between the two linearization domains

and offer much better prediction capabilities.

4.3.3 Flutter of an Aeroelastic Wing

This example is inspired from the work in [77] where the authors develop a structured model reference
adaptive control for a wing section with structural nonlinearity, designed for active suppression of limit
cycle oscillations. In this paper we are interested in the data-driven model identification of the dynamics

leading to these oscillations.

4.3.3.1 Presentation of the Problem

In this example, the nonlinear aeroelastic response of a wing section, as depicted in Figures 4.5 and
4.6, is investigated. The wing is mounted vertically on a flexible support which permits two degree-
of-freedom motion (see Figure 4.6). The model support system has been developed to provide direct
measurements 78] of nonlinear aeroelastic response as well as to examine new control strategies of such
responses [79]. A detailed description of the test apparatus is presented in [79]. The support system
permits prescribed pitch and plunge motion for a mounted wing section. Plunge motion is provided by
a traversing carriage. Pitch motion is provided by rotational cams that are mounted on this carriage.
The model support system provides freedom in test conditions and parameters. The structural stiffness
response of the system is governed by a pair of cams that are designed to provide tailored linear or
nonlinear stiffness. The shape of each cam, stiffness of the springs, and pretension in the springs dictate
the nature of the nonlinearity. With this approach, these cams provide a large family of prescribed
stiffness configurations. Other physical properties — such as the eccentricity of the aerodynamic center,
the mass of various system components, the mass eccentricity, the moment of inertia of the wing, the
stiffness characteristics, and the wing shape — are easily modified for parametric investigations. This
configuration also permits studies of internal resonances such as those presented in [80]. System response
is measured with accelerometers and optical encoders mounted to track motion in each degree-of-freedom.
The plunge and pitch displacements are measured with optical encoders attached to shafts running
through the respective cams. The plunge and pitch accelerations are measured with accelerometers.

Freestream velocity is determined from a pitot probe mounted in the test section.

Denoting h and «a as plunge and pitch variables, the equations of motion for this aeroelastic system
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Figure 4.5: The aeroelastic model with pitch and plunge degrees of freedom
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Figure 4.6: Schematic view of the experiment setup

are obtained as [81]

mr mwzab| | h c, O h kn 0 h
+ -
mwxab 1, a 0 col |& 0 kala)| |

where mp is the total mass of the wing and its support structure, my is the mass of the wing only,
and I, is the mass moment of inertia about the elastic axis. The elastic axis location of the model, a,
may be varied and plays a significant role in the stability of the system [82]. In the above equation,
T = Teg/b represents the nondimensionalized distance between the center of mass and the elastic axis,
and cp, and ¢, are the plunge and pitch structural damping coefficients, respectively; and L and M are
the aerodynamic lift and moment about the elastic axis. Structural stiffnesses are represented by kj;, and
ko for plunge and pitch motions, respectively. It is possible to incorporate various nonlinear features
in this design and the associated experiments. These features include aerodynamic nonlinear loads,
Coulomb damping, nonlinear stiffness, and higher-order kinematics. However, in this paper, we prescribe

the sole source of nonlinearity as a nonlinear torsional stiffness, which is approximated in polynomial
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form as
Eo(@) = koo + ka1a + ka2a?® + kaza® 4 kgaa® + -+ . (4.36)

As mentioned earlier, in the experiment, the nonlinear torsional stiffness is realized by nonlinear
cams, and the actual coefficients in the above polynomial representation are obtained from measured
displacement and moments. Note, all polynomial terms are present in the above equation to account for
the asymmetry in the measured stiffness.

There are many approaches available to represent the unsteady aerodynamic lift and moment loads.
For the purpose of deriving a feedback control model for the class of systems discussed in this paper,
appropriate choices may include the model in [83] or reduced order models based on frequency domain

analysis. Herein, we employ a quasi-steady aerodynamic model [81]

h 1 é
_ 2 n L a
L = pU%be, (a + =+ (2 a) b ) (4.37a)

_ .
M = pU%c,,. (a + g n (2 - a) b(0}> (4.37b)

where U is the freestream velocity, and ¢;, and ¢,,, are aerodynamic lift and moment derivatives. It
is important to note that this model is proven appropriate for the low reduced frequency, subsonic flow

that is observed for the experiments herein. The equations of motion in state space form are

= f(x) (4.38)
with
T h plunge
x «@ itch
a= |7 =% =] P (4.39)
T3 h plunge rate
Ty & pitch rate
and
T3
T4
flx) = . (4.40)

—kix1 — (kQUQ —‘y—p(ﬂ?g))ﬂ?g — C1T3 — C2X4

—kg!L‘l — (k4U2 + CI((EQ))xg — C3T3 — C44

For brevity, a set of new variables is introduced in these equations, and they are defined in Table 4.4.
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As seen from the equations and Table 4.4, the nonlinear aeroelastic system is parametrically dependent
on the location of the elastic axis, a (or, z,) and the freestream velocity U. It is shown in [82,84] that,
depending on the values of these parameters, the nonlinear aeroelastic system exhibits a wide variety of

bifurcation characteristics.

Table 4.4: System variables for the aeroelastic wing problem

Variable | Definition

d mrl, — me2 b2

Ky Lokn/d

ko (Inpbey, +mwzapbicm,)/d

ks —mwxobky/d

k4 —(mwaxapbie, +mrpb3c,,.)/d

p(z) —mw X bko(z)/d

q(x) mrka(z)/d

c1 (In(ch + pUbcy,) + mwzapUbe,,..)/d

Co (I,pUb%c,, (f —a) — mwxabey + mwxapUb‘lcma(% —a))/d
c3 (—mwxab(cn + pUbcy,) — mrpUbe,,.)/d

4 (mr(ca — pUbcm, (3 — a)) — mwzapUbe, (2 —a))/d

4.3.3.2 Results and Discussion

For the aeroelastic system discussed in this paper, the nonlinear pitch spring stiffness is measured, and

the polynomial approximation of the stiffness is obtained as
ko () = 6.8614(1 + 1.1438a + 96.66960> + 9.5134a° — 727.6641a*) [N - m/rad). (4.41)

The physical parameters of the experimental apparatus, which are used for the numerical simulation,

are given in Table 4.5.

Table 4.5: System parameters for the aeroelastic wing problem
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Parameter | Value

mr 12.3870 kg

mw 2.0490 kg

b 0.135 m

P 1.225 kg/m3

Teq 0.0873 — (b + ab) m
I, mwrgg +0.0517 kg-m?
a, 6.28

cl, 3.358

Cm, (0.5 4 a)cy,

Cmy —1.94

kp, 2844.4 N/m

ch 27.43 kg/s

Ca 0.036 kg-m? /s

a 0.6847

U 16 m/s

The existence of limit cycle oscillations (LCO) is dependent on the initial displacement and the
freestream velocity as well as parameters associated with the configuration (refer to Figure 4.5). Figure
4.7 displays the summary of the training phase and the identification results. The three propagation plots
show the identification capabilities of TIKO, TVKO and the propagation achieved using higher-order
state transition tensors (HOSTT). The training sample set is a Gaussian distribution around the nominal
with covariance 0.01 for the plunge h and 0.001 for the pitch «, plunge rate h and pitch rate ¢. Bach
point on the bottom graph corresponds to the average RMSE of 20 propagated testing trajectories with
the same initial ||dx||. For this case, the maximum order for the appended polynomial basis functions to
the measurement vector is only 4 in to contain the dimension of the KOs to a reasonable size. Table 4.6
provides the RMS errors for the largest initial deviation of ||da|| = 0.02. Similarly to previous examples,
the accuracy of the TVKO and HOSTT operators increase with the lifting degree, and the accuracy in
propagation resulting from smaller perturbations is just slightly better with HOSTT while the TVKO
yields better prediction capabilities for larger initial ||dxg||. The graph displaying the evolution of the
RMS error for TIKO shows that despite good prediction accuracy during the transitional phase (before
the LCO happens around 0.4 sec), the accumulated error becomes too prevalent and the reconstructed
trajectory diverges. However, the TVKO yields very good accuracy for the entire time, with a clear

distinction between different orders of lifting degree.

Table 4.6: Aeroelastic Wing Flutter problem: RMS error for pure prediction trajectories for ||0xq|| = 0.02
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Figure 4.7: Aeroelastic wing flutter
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[|0xo|| = 0.1 | Order 1 Order 2 Order 3 Order 4

HOSTT 1.6-1071 | 79-1072 | 41-1072 | 1.7-1072

TIKO 3.6-10° Diverge Diverge Diverge

TVKO 1.1-1072 | 5.7-107* | 2.8-107° | 2.5-107F

4.4 Conclusion

The work presented in this chapter allows one to extend subspace identification methods for the
identification of a time varying Koopman operator. The linearization of the nonlinear flow about a
nominal trajectory of the nonlinear system (instead of a nominal point for time-invariant methods)
results in a substantial improvement of the validity region of the Koopman operator and curtails the
dimension of the lifting space. As explained in the first section, the linearization about a nominal
trajectory leads to a linear time-varying (LTV) system as opposed to a linear time-invariant (LTT)
system for the conventional Koopman operator. The time-varying Koopman operator (TVKO) is
developed as an alternate means to increase the prediction accuracy for a fixed dimension of the lifted
space. Two versions of an academic nonlinear system, an example of a chaotic dynamical system and
a more challenging aeroelastic wing flutter problem are considered and showcase the utility of this
newly developed time-varying Koopman operator in predicting the response of a nonlinear system. The
TVKO prediction accuracy is better in all cases, especially when the domain of initial perturbations
grows. The next chapter will further highlight the application of time-varying subspace methods to
high-dimensional problems and demonstrate the utility of a combined framework based on TVERA and

TVKO for reduced-order modeling of high-dimensional systems.
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Chapter 5
Nonlinear Model Identification

from Output Data

5.1 Introduction

For many engineering applications there is a real computational challenge in developing methods and
algorithms for computing invariant subspaces and their reduced dynamics. This is due to the fact that
very high-dimensional nonlinear systems arising from spatial discretization of the governing partial
differential equations render their computation unfeasible for realistic engineering structures (described
by finite-element models for example). While previous chapters dedicated the application of the time-
varying Koopman operator to low-dimensional academic examples, this chapter is devoted to show the

application of time-varying subspace methods to high-dimensional problems.

The first example studies the coupled analysis between the flight dynamics, structural dynamics,
heat transfer, and hypersonic aerothermodynamics, viz. AeroThermoServoElasticity (ATSE), for a
hypersonic vehicles. A thorough performance analysis for ATSE is computationally intractable with
high fidelity models for each discipline. Hence, there is a need to develop accurate reduced order models
(ROM) for aerothermodynamics as well as thermoelasticity. The Time-Varying Eigensystem Realization
Algorithm (TVERA) is used to identify a linear time varying (LTV) reduced order model from a high
fidelity computational framework with guaranteed observability. The second example considers a finite
element model of a geometrically nonlinear, cantilevered von Karman beam [85,86]. This high-fidelity
simulation utilizes collocation/spectral points to describe the displacement and velocity of the beam
under structural nonlinearities. The TVERA is used to first find a time-varying model on a minimal
subspace that will allow for a TVKO to produce an extended model for the reduced state in a lifting

space. Several orders for TVERA and TVKO are investigated and compared.

5.2 Model-Order Reduction in Hypersonic Aerothermoelasticity

Air-breathing hypersonic vehicles are under increasingly active development in recent years [87,88]. This
class of vehicles are expected to operate at high Mach number in the atmosphere for the entire mission

profile that can last for 30 minutes or even longer time. Due to the high speeds, the vehicle is exposed to
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the extreme aerothermodynamic environment involving combined aero-thermo-acoustical loadings. The
aerothermal loads are due to the hypersonic aerodynamic pressure and heat flux. The acoustical loads
are inherently stochastic and mainly due to the strong turbulent interaction present in the hypersonic
boundary layer over the complex vehicle geometry. The high heating rates lead to degradation of material
properties. The thermal stresses introduced by the temperature gradients and geometrical constraints
affect the structural integrity and cause structural instabilities, including buckling and flutter. The
thermoelastic effect further impacts the controllability of the vehicle, esp. the response effectiveness of
aerodynamic control surfaces. It is clear that the coupling between the structural dynamics, heat transfer,
and hypersonic aerothermodynamics, viz. aerothermoelasticity, constitutes the core subsystem governing
the operation of a hypersonic vehicle. The predictive aerothermoelastic capability over extended flight
time is a key ingredient for analyzing performance, stability, and reliability of hypersonic vehicles.

However, due to the current limited capability of ground tests and the lack of available flight test data,
there is a significant degree of uncertainty associated with the aerothermoelastic modeling of hypersonic
vehicles and limited ability to alleviate this uncertainty through experimental testing [89]. Therefore,
the aerothermoelastic analysis, as a high-dimensional nonlinear multi-physics problem spanning across
multiple spatial and temporal scales, involves strong stochastic dynamics as well as model uncertainties
that are due to either imperfect high-fidelity models or reduced-order models. The uncertainty propagate
across the coupling interfaces between the models and aggregate over time in the aerothermoelastic
analysis. While there is a large body of research conducted on the uncertainty quantification (UQ) of
aeroelasticity and aerothermoelasticity, the studies either focused on the calibration of models of a single
discipline, or the quantification of several parametric stochastic variables in coupled analysis [90,91].
Significant algorithmic development is required to identify, quantify, and propagate these stochastic
effects and model errors through a time-dependent, high-dimensional state space, as is the case for
hypersonic aerothermoelastic analysis.

Currently, the aerothermoelastic analysis is typically carried out using a computationally efficient
kriging-based aerothermal surrogate coupled to nonlinear finite element models for structural dynamics
and heat transfer, i.e. the thermoelastic solver [92-94]|. It is relatively easy to quantify and propagate
the uncertainty associated with the aerothermal loads by exploiting the mathematical formulation for
kriging [95]. However, uncertainty quantification and propagation in a nonlinear dynamical system is
challenging in general. As a step towards the efficient uncertainty quantification in aerothermoelastic
analysis, we present a new time-varying Koopman operator (TVKO) to compliment the computational
and experimental studies of hypersonic ATE. The TVKO utilizes a subspace realization method known as
the time-varying Eigensystem Realization Algorithm [28] to approximate the underlying nonlinear model,
such as the ATE system, as a linear time varying (LTV) model in a lifting space from time histories of
input-output data from computational analysis or experiments. The linear form of the time-varying
model makes it particularly amenable for the uncertainty quantification (UQ) in a computationally
efficient manner.

This section aims to demonstrate the capabilities of the TVKO approach to accurately predict
the ATE response of hypersonic applications. In particular, the benchmark cases include an academic
problem such as the analytical flutter model of a heated panel. A high-fidelity ATE model of a hypersonic
skin panel will be used to generate the input-output data. The availability of the TVKO methodology
eventually will enable accurate hypersonic ATE analysis and control under uncertainty with tractable

computational cost.
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This section aims to demonstrate the efficacy of the proposed approach for identifying a reduced-
order model of a coupled thermal-structural response in an aerothermoelastic simulation. Two cases are
considered. First, a simplistic model for the flutter of a panel with prescribed increasing temperature is
studied. This numerical simulation allows us to demonstrate the capability of the developed algorithm
on a low order model where the measurements are of low dimension. Second, a fully-coupled nonlinear
aerothermoelastic model of a hypersonic skin panel is studied. This numerical simulation demonstrates

the generalizability of the TVERA algorithm to high-dimensional problems.

5.2.1 The Panel Flutter Problem

This section aims to demonstrate the efficacy of the proposed approach for identifying a reduced-order
model (ROM) of a nonlinear aerothermoelastic simulation. Following previous work [96], a ROM is built
for a coupled thermal-structural response for the flutter of a panel with prescribed increasing temperature.
This numerical simulation allows us to demonstrate the capability of the developed algorithm on a
low order model where the measurements are of low dimension.The true unknown dynamical model

capturing the flutter of a heated panel is given as [97]:

1 5 4 1 /A 1
Srtqu(t) — 52 Rrqu () + 1t g3(t) — ~Aga(t) + 5t (D@2 (E) + =1/ Sodl(t) + =¢!(t) =0,  (5.1a)
2 4 3 2V M 2

% 4 2 4 2 4.3 1 )‘7“ / 1 4 =

3)\q1 (t) 4+ 87 qa(t) — 20m* Rrga(t) 4+ 57qi (t)g2(t) + 207 g5 (t) + 5\ q5(t) + 542 (t)=0. (5.1b)

where g1 and ¢o are structural modal coordinates, A is the dynamic pressure quantifying the aerodynamic
loading, p is the mass ratio quantifying the aerodynamic damping effect, Ry is the in-plane force due
to the thermal stress. In general, when Ry = 0, there is a critical value A.., such that the panel stays
stable when A < A, but enters limit cycle oscillation (LCO) when A > A... When Ry > 0, the critical
value A, still exists. However, the panel may become statically buckled or enter chaotic response instead
of being stable, when A\ < A... In this example, it is assumed that Ry = 0 and the response of the panel
is studied for a range of A between 260 and 300. Additionally, the mass ratio and Mach number are set
to 4 =0.01 and M = 5.

For simulation purposes, the measurement data is sampled at a frequency of 100 Hz, i.e., a time
step size of 0.01s, for 10 seconds. Training trajectories are simulated by random sampling of initial
deviation from a zero mean Gaussian distribution with standard deviation of 0.0001 from the nominal
initial condition g(0) = [0_001 0 0 0} T. A Koopman operator is derived for different values of A\ by
varying A from 260 to 300 in the increment of 1. A total of 100 experiments are performed for each
value of A to construct the TVKO operator.

Figures 5.1(a) to 5.1(f) show the identification capabilities of both the time-invariant Koopman (TI
Koopman) and time-varying Koopman (TV Koopman) operators to reproduce the amplitude of the
deformation modes of the panel. While the TI Koopman operator performs well before the bifurcation
occurs (A < 280), it degrades when the amplitude of the LCO increases. Particularly, the model fails to
capture the transient response of the panel that transitions from initial condition to LCO. On the other
hand, the TVERA procedure is able to provide a linear time-varying operator that approximates the

dynamics of the nonlinear system for all values of A.
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The RMS errors are presented in Figure 5.2 for both operators for the three cases. From Fig. 5.2, it
is clear that the accuracy of the time-invariant as well as time-varying Koopman operators improves
when the lifting degree increases. Furthermore, the TV Koopman operator provides from one to two
(for large oscillations) up to five (for small oscillations) orders of magnitude better prediction accuracy
than the prediction errors corresponding to the conventional TT Koopman operator. While the accuracy
of the TI Koopman operator for lifted degree 3, i.e., test case 3 is comparable to actual linearization of
the nonlinear equations of motion, the prediction accuracy corresponding to the TV Koopman operator
is much better than its TI counterpart for lifted degree 3.

Figure 5.3 presents the bifurcation plot corresponding to the panel flutter problem. To generate Fig.
5.3, TV Koopman approximators of order 3 are calculated for each value of A between 260 and 300. If
models for some values of A are not available, interpolated values are calculated from the two adjacent
models. This method shows a very good agreement between the identified, the interpolated and the
true values because the LCO amplitude is calculated once the transient regime has vanished and the

oscillatory regime has settled.

5.2.2 High-Dimensional Nonlinear Thermoelastic Simulation

Subsequently, the same type of analysis is applied to a high-dimensional nonlinear aerothermoelastic
problem. The aerothermoelastic simulation is performed using the HYPATE framework, which has been
extensively verified and applied to various hypersonic aerothermoelastic problems [89,94]. In this study,
the low-fidelity portion of the framework is employed. In the aerothermodynamic solver, the pressure
and the heat flux are computed using full-order piston theory and Eckert’s reference enthalpy method,
respectively. The structural and thermal solvers are both based on the finite element formulation. The
structural solver models the structural dynamics of anisotropic (i.e. composite) shallow shells with shear,
geometric nonlinearity, and thermal stress. The thermal solver models heat transfer in composite shells
using a layer-wise thermal lamination theory. Both solvers account for temperature-dependent material
properties. The solvers of the three physical domains are solved using a second-order time-accurate
loosely-coupled scheme.

In this example, a 2D skin panel configuration is considered, as shown in Figure 5.4 and Figures
5.5(a) through 5.5(j). The panel is simply supported at the leading and trailing edges. The geometrical
parameters are h = 5mm, ¢ = 1m, and L;. = 1m. The panel is made of Al7075 and the material

properties are temperature dependent. The initial temperature is T' = 273 K.

] I K
I I
Approaching flow : :
_—
| 1 Iy
I Z I
Panel
1 I
Rigid w?:\ T Rigid wall A
| | | >
Llc a l2

Figure 5.4: 2D skin panel configuration

The measurement equation is now directly about the displacement of the middle line of the structure
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Figure 5.1: Propagation of modal state ¢; for different values of \. LTI Koopman on the left, LTV
Koopman on the right

structure and its temperature, creating a vector of dimension 49 x 2 = 98. The initial absolute
perturbation applied to the panel is Py = 15000. Fifteen sets of experiment are created for the study:
twelve will serve as training set for TVERA and three will be used for testing the accuracy of the derived
model. The wall temperature is a parameter of the system that is being varied for each experiment;
T, = 256, 258, 260, 262, 264, 266, 268, 272, 274, 276, 280 and 282 K are used for training whereas T, =
254, 270, 278 K are used for testing. The numerical data is acquired for 312 ms at a frequency of 5000
Hz. The procedure we employ for this numerical simulation is similar as before and a reduced model

of order n = 10 has been found to be accurate. Although the resulting order of the reduced model is
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Figure 5.2: RMSE of the states ¢; and g2 for LTT and LTV Koopman for different values of A
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Figure 5.3: Bifurcation plot

usually found by examining the singular value decomposition plot, the one provided Figure 5.6 does not
allow the analyst to gain too much insight. While it seems that 8 singular values could be found to be
of greater magnitude than the rest of the sequence, it is difficult to acknowledge the presence of a clear

cut criteria, especially as time increases.
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Figure 5.6: Evolution of the magnitude of the singular values from singular value decomposition

Figures 5.7 and 5.8 show the evolution of the displacement as well as the temperature increase of the
panel throughout the time for the true and the identified systems. The identified linear time-varying
model is able to capture the deformation of the panel correctly, even when the larger amplitude oscillations
begin. As time increases, the identified model tends to slightly deviate from the true deformation,
although capturing the right temperature increase. Note that the T, of the experiments from the testing
set is a parameter that is not included is the training of the reduced-order model, meaning that the

model is able to reproduce the behavior of the panel under different testing conditions.
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Figure 5.8: Illustration of the displacement and temperature increase from the
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5.3 Reduced-Order Dynamics in High-Dimensional Finite-Element

Models: Von Karman Beam

The estimation of invariant manifolds (or subspaces) allows for quantitative and qualitative understanding
of nonlinear phenomena in dynamical systems and is a relatively new and rapidly evolving discipline
due to advances in scientific computing. However, the computation of reduced-order models of high-
dimensional mechanical systems arising from spatially discretized partial differential equations (PDEs)
is still a challenging problem. Most global techniques that accurately represent very high-dimensional
nonlinear systems discretize the domain of interest into a mesh e.g., via collocation or spectral points.
As the dimension of the problem invariably becomes large in the case of discretized PDEs, practical
numerical application or system analysis via collocation and spectral approaches becomes computationally
intractable. In this section, we consider a finite element model of a geometrically nonlinear, cantilevered
Von Karméan beam, illustrated in Figure 5.9 [85]. The geometric and material properties of the beam

are given in Table 5.1. The equations of motion are given in the general form
ME+(¢x+ Kz + f(x) =0, =x(t) € R", (5.2)

where x(t) represents the displacement of the beam in 3 dimensions. This model is programmed in the
finite element solver [98], which directly provides us the matrices M, (, K and the coefficients of the
nonlinearity f in physical coordinates. We discretize this model using 10 elements resulting in n = 30
degrees of freedom. We are interested in predicting the response of the beam for initial perturbations of
maximum 10~% m. For illustration, Figures 5.10(a) and 5.10(b) show the beam at rest and deflected.
Sixty random initial deflections in the vertical plane (x3, see Figure 5.9) are considered and data is
recorded for 2 ms. These experiments will first be used to generate a reduced-order model using TVERA.
Once that model is found, the minimal state is estimated using the output influence matrix and lifted
into a higher dimensional space. Finally, a TVKO is identified allowing for better accuracy of the state

propagation. Figure 5.11 presents an overview of the procedure.

Table 5.1: Physical parameters of the Von Karman beam model

Symbol | Meaning Value [unit]
L Length of beam 1 [m]
h Height of beam 1 [mm]
b Width of beam 0.1 [m]
E Young’s Modulus 70 [GPa]
K Viscous damping rate of material | 107 [Pa-s|
p Density 2700 |kg/m?]

Figures 5.12(a), 5.12(b) and 5.12(c) show the prediction capabilities of the different models on a
testing trajectory (errors are averaged over 10 random testing initial conditions). Different models using
increasing orders of TVKO are displayed alongside models from ERA and TVERA, serving as references.
Coupling a TVKO on top of a reduced-order model from TVERA helps decrease the prediction error
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Figure 5.9: The schematic of a two-dimensional Von Karman beam model with height h and length L,
initially aligned with the z; axis
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(a) Model of the beam, at rest (b) Random initial perturbation

Figure 5.10: Representation of the beam using 10 elements

and increasing the order of the lifting space for TVKO also allows for better prediction capabilities.
Figure 5.13 compares different models with similar dimensionality (dimension 2 < n < 9). While higher
order of TVERA can help in the prediction accuracy, a lower order TVERA coupled with TVKO can
yield better accuracy in some cases. For example, a TVERA of order 2 with a TVKO of order 2 (total
dimension n = 5) yields better prediction capabilities than TVERA of order 6 (total dimension n = 6).

5.4 Conclusion

This chapter has demonstrated the application of time-varying subspace methods for the analysis and
reduced-order modeling of high-dimensional problems. It has started with the model-order reduction for
hypersonic aerothermoelasticity, studying the coupled analysis between flight dynamics, structural dy-
namics, heat transfer, and hypersonic aerothermodynamics. Simulation results clearly show the improved

performance of the proposed time-varying Koopman operator approach as compared to conventional
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Figure 5.11: The 2-step system identification framework used for the Von Karman beam

time-invariant Koopman operator for both low- and high-fidelity aerothermoelastic simulations. Through
the example of a finite element model of a geometrically nonlinear, cantilevered Von Karmén beam, we
also demonstrate the utility of a combined framework based on TVERA and TVKO for reduced-order
modeling of high-dimensional systems. As aerothermoelastic analysis or structural analysis through
finite-element models involve strong stochastic dynamics and since uncertainty quantification in nonlinear
models is challenging in general, the methods developed in this chapter serve as a first step towards the

analysis of high-dimensional nonlinear systems.

One key contribution of the work presented in this chapter is the combination of model reduction
coupled with the Koopman framework. Usually, system identification methods based on data-driven
Koopman analysis tend to build a surrogate of higher dimension from relativaly low dimensional data-sets,
impacting in reality the use of the Koopman framework. What has been showed here is that selecting
the right subspace to start with allows for the Koopman framework to be utilized afterwards. This

directly echoes with results presented in Chapter 3. The iterative procedure presented in Chapter 3 -
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Figure 5.12: Predicted error for different orders of initial reduced-order model

automatically selecting higher-order basis functions solving an #;-norm optimization problem to exaplain
the data - is somewhat equivalent to the procedure TVERA + Koopman presented in this chapter.
Further testing is needed to establish a direct correlation between the two approaches but the end goal

is eventually the same. This also explains and justifies the choice for the title of Chapter 3.

Now that a clear method has been presented to derive models for - potentially high-dimensional -
nonlinear systems, the next chapter will focus in depth into the calculation of uncertainties associated
with a system’s states. An array of different methods and approaches will be presented and compared

side by side, weighing the pros and cons for each of them.
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Figure 5.13: Prediction on a random testing initial perturbation for simulations with total order between
2 and 9 using a combination of TVERA and TVKO
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Chapter 6
Applications to Uncertainty
Quantification

6.1 Introduction

Estimation theory deals with the problem of estimating the state of a dynamical system from sensor
measurements, usually corrupted by noise. Quantitative measures to accommodate uncertainties (in
control as well as state variables) from a designed trajectory are rigorous and exact for the linear systems
but nonlinearities in the representation of the dynamics lead to significant challenges in estimating
uncertainties associated with the state vector. Approximate measures to quantify uncertainties in the
real world are poor and can lead to significant compromises in the overall performance and safety.
Whether one is planning a path for a robotic system or designing a maneuver for a spacecraft to
avoid a collision with another spacecraft, the calculation of uncertainties associated with a trajectory
is paramount in many engineering fields. Uncertainty propagation through nonlinear dynamics is
computationally expensive. Conventional approaches focus on finding a reduced order model to alleviate
the computational complexity associated with the uncertainty propagation algorithms. Given the
significance of this problem, several approaches are developed to address the uncertainty quantification
problem. This chapter exploits the fact that the moment propagation equations form a linear time-
varying (LTV) system and use system theory to identify this LTV system from data only. Four different
methods to estimate the moments of the probability density function associated with the dynamical
states of a system are presented. Two of these methods are qualified as indirect methods as they first
estimate the process as a linear time-varying dynamical system and then propagate the initial moments,
or calculate the moments from quadrature; the two other methods are qualified as direct methods as
they directly compute or estimate the dynamical process that governs the propagation of the moments
for any probability density function. The next two sections will expand on those different methods and
the last section will consider three different examples to compare these methods with each other. As a

reference, statistical moments will also be calculated from CUT quadrature [99].
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6.2 Moment Propagation: Direct Method

This section explains how to propagate the moments of a probability density function using the equations
that govern the dynamical evolution of the moments. To gain insight into this procedure, we first

consider the autonomous dynamical system

—z(t) = f(x), =(0)=xo~ N(0). (6.1)

with A(0) some initial random distribution. The work in this chapter will consider initial Gaussian
uncertainty, but the type of distribution does not impact the subsequent developments. We will see that

only the moments of N'(0) are relevant. Recall from Eq. (2.42),
> Lo
6l‘l Z 7‘ i 7‘17"2 rpéx()rl(sx()rz o 533071) (62)

is the deterministic solution of Eq. (6.1) using higher-order state transition tensors evaluated along the

nominal trajectory @ = x*, defined by

oPx;
oF L . 6.3
BT Tp ax()rl 8$0T2 T al'()rp ( )
x=x*
Now, by definition of the central moment of order p
PR (1) =B [0, ()0, (£) -+ 04, (1)] . (6.4)

In this equality, P(®)(t) denotes the moment of order p of the random variable 6z (t). Eq. (6.4) provides
the explicit form of the tensor P()(¢) using index notation. Before diving into the core of this chapter
and deriving the governing equations for moment propagation of arbitrary order, let’s study an easy

scalar example. Consider the scalar dynamics

i= f(z) (6.5)

with initial condition z(0) = z¢ ~ N(0). At any time ¢, the first moment (mean) is

PU(t) =B [a(t)] (6.6)
and its time derivative

PO = E[] 6.7a

=E[f(z)] (6.7b)

=E|f(P0)+ L - p) (6.7

T|p=p)
~ f(PY) + fi(E[z] — PY) 6.7d
~ f(PW) 6.7e)
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This formulation is at the core of the famous paper by Kalman [4], which solved the estimation problem
for a linear dynamical system with measurements corrupted with Gaussian noise, and was quickly
applied to nonlinear problems via a local linearization of the dynamic system and measurement equations
arriving at what is today known as the Extended Kalman Filter (EKF). The same developments with

the second moment would yield
P~ frp@ T (6.8)

Utilizing an automated nonlinear expansion of the model about a nominal trajectory, a second order

approximate solution for the moments dynamics is derived using higher-order state transition tensors as

PY = E[i] (6.9a
= B[f(2)] (
~E[£(PD) + fi(e = PY) + f5(0 = PO)a = PO)T (6.9¢

~ f(PY) + f5 P (6.9d

and the time evolution of the first moment includes knowledge of the second moment. This solution can
be utilized in evaluating the evolution of statistics of the departure motion as a function of the statistics
of initial conditions (similarly as thus obtained in the determination of a state estimate assuming a
Kalman update structure). Using Eq. (6.2) it is then possible to relate arbitrary moments of order p at

time ¢ with the initial moments [68]:

MWy — o pWD ! o ) L os (3)
Pi1 (t) - (I)il,jl Pj1 (O) + §¢i1,j1j2 Pj1j2 (O) + ?q)il,jljzjzapﬁjzjs (0)
1 ] ! (6.10a)
* (4)
+ a(bilajlj2j3j4pjlj2j3j4 (O) +HOT
(2) — &* * (2) 1 * * * * (3)
F)ili2 (t) - (I)ihjl (I)i2712pj1j2 (O) + 5 (¢117j1j2 q)izajs + ¢i17j1 ®i27j2j3) jljzjs( )
Lo o " . L . (4)
+ 5 ((I>i1,j1 (I)i27j2j3j4 + (I)i1,j1j2j3 q)i2,j4) + ﬁq)ilx.h]é (I)i27j3j4 Pj1j2j3j4 (0) +HOT
(6.10b)
(3) R X * * (3)
Pz‘u‘zis (t) - (I)ihjl (I)imjz ¢i31j3 Pj1j2j3 (0)

1 * * * * * * * * * (4)
+ 5 (q)i1,j1j2 q)iz,js (I)is’j4 + q‘)ihh (I)iz,jzjs (I)i37]'4 + (bil»jl (I)imjz (I)ia,]'sﬂ) Pj1j2jsj4 (O) +HOT
(6.10¢)
(4) — ®* * * * (4)
Pirinisia () = i 5 o, 5, Py s P, ja Py asgs (0) + HOT (6.10d)

Here, Eq. (6.10) describes the evolution of the first four moments of a probability density function
with respect to its first four moments. The quantities on the left hand side refer to the value of the
corresponding statistical moment at time ¢ propagated from a certain initial time and a corresponding
initial moment value.

*

Frirger, - 1 One

The unknowns in the above equations are the time-varying higher-order tensors ®
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has access to an analytic version of the dynamical flow f then it is possible to compute them numerically
and thus propagate the moments forward in time. This will be referred later as analytical higher-order
moments or analytical HOM in short. However, since the time-varying coeflicients of the state transition
tensors appear linearly, classical data-driven approaches can be used to obtain an estimate of the
dynamical equations Eq. (6.10) that govern the evolution of a probability density function’s moments. A
TVKO-based approach can effectively be exploited to identify a model for Eq. (6.10) from data only and
be used to propagate initial moments to arbitrary future times. This is qualified as a direct method
as no reduced-order dynamical model is generated for the actual system; rather it is the process that
governs the evolution of the moments of an arbitrary probability density function that is being identified.
These two direct approaches are labeled 2 and 3 in Figure 6.1, with 2 being the analytical solution and 3
the data-driven approach based on TVKO.

6.3 Moment Propagation: Indirect Methods

An other way to approach the moment propagation problem is to first build a model of the dynamical
system from data and then use that model to propagate the initial moments to any arbitrary time step,
hence the categorization as an indirect method. Modeling based on a TVKO can be used to find a
time-varying linear representation of a dynamical system up to any arbitrary order as defined in chapter

4. Given a discrete LTV system given as z;1 = Az, the moment propagation equations are

P (tes1) = Elzi, es1] = E[Ai gy w20 ) = Avju i Py (1) (6.11a)

P (tkr1) = E (20, ki 1] = B [Ais s b Aiaso k%0 kZk]) = Aivgr b Aizga kPl (t) (6.11b)

and can be written for any arbitrary moment. This method is labeled 4 in Figure 6.1. A final alternate

method would consist in using initial CUT samples from the initial probability density function and
propagate these points through zp; = Axzy. Statistical moments can then be inferred at each time
step. This last two method is labeled 5 in Figure 6.1

6.4 Summary

Figure 6.1 offers a compact overview of the methods. The first method that uses CUT quadrature points
to estimate statistical moments over time will be considered the reference method, i.e. relative errors
will be calculated from the results of this method. As a brief outline, the five methods are summarized

below.
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Method | Details

1 Quadrature method. Statistical moments are calculated over time from an initial

probability density function sampled with the CUT method.

2 Exact method using true propagated higher-order tensors. Higher-order tensors are

computed along a nominal trajectory and used to calculate moments with Eq. (6.10).

3 Similar as 2 but uses a TVKO-based approach to estimate higher-order tensors
with time. Since the moments appear linearly in Eq. (6.10), a LTV model can be
identified from several propagated distributions from which statistical moments are
calculated over time. These statistical moments form the training set to identify the
LTV model.

4 Indirect approach. First a model of the dynamics is identified using a TVKO-based
approach. Moments are then propagated over time using Eq. (6.11).

5 Indirect approach. Similar as method 1, it is a quadrature method. The model from

method 4 is used to replace the true dynamics in method 1.

6.5 Numerical Simulations

This section considers three examples to illustrate how different methods for uncertainty quantification
presented in this chapter compare with respect to each other. Note that all simulations generate a

unique set of training points and testing points that are used to train and test the five methods.

6.5.1 Double-Well Duffing Oscillator

The first example corresponds to the classical nonlinear Duffing oscillator studied before governed by

the following equations

=y, (6.12a)
§=—0y —ax — fa (6.12b)
with parameters @« = —1,8 = 4,5 = 0, corresponding to a double-well potential. In order to fairly

and accurately compare the four methods discussed previously, a unique set of data will be used for

training. In this case, 32 points (initial conditions) are generated from 4 normal distributions around

a nominal point x5 = [0,5 0,5} . Full covariance matrices associated with these distributions range
from 3 x 107*1, to 9 x 10~*I,. Individual trajectories are used for the CUT quadrature method to
reconstruct the moments over time as well as to learn the Duffing dynamics, useful to build an identified
system with TVKO. Statistical moments are also calculated along the trajectories in order to provide
data for learning the dynamics of the moment equations. Figure 6.2 presents an overall summary of the
procedure. The upper portion of Figure 6.2succinctly explains the difference between the direct and
indirect methods. While the direct method directly identifies the dynamics that govern the moments

evolution, the indirect method first identifies the Duffing dynamics and then propagates the moments of
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Figure 6.1: Summary of the methods used for moment propagation/estimation

the initial probability density function over time. In addition, analytical values of higher-order tensors
are calculated along the nominal trajectories to reconstruct the actual true dynamics of Eq. (6.10).
Finally, CUT points are sampled from the testing distribution to be used to calculate both true statistical
moments as well as statistical moments from the identified model. Monte Carlo points are superimposed
to the phase space to visualize the evolution of the distribution. The four methods considered in this
chapter are able to match the distribution and mostly agree with the CUT method, with relative errors
for the first two moments are plotted on the left column. Moments calculated from the CUT samples
using the identified dynamics (TVKO) yield the smallest relative error while the errors induced from the
three other methods are of the same order of magnitude. Notice that propagating moments through the
identified model yields the largest error overall. The two direct methods (analytical and data-driven)
are of the same level of accuracy. The overall better performance of using CUT samples in conjunction
with a time-varying identified model is explained by the optimality of the CUT sampling method with
the higher accuracy of the TVKO to represent the true dynamics (here, the TVKO is of order 6).
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Figure 6.2: Uncertainty quantification analysis for the double-well Duffing oscillator

6.5.2 Flutter of an Aeroelastic Wing

The same example as in chapter 4, inspired from the work in [77], is considered here. Originally developed
as a structured model for reference adaptive control of a wing section with structural nonlinearity, we
are interested in quantifying the uncertainties associated with the oscillations of the wing. For a detailed
presentation of the system, refer to chapter 4. 92 initial points, arranged in 4 initial normal distributions

are considered for training with data recorded at a frequency of 50 Hz for 3 seconds. Those 92 points

are sampled around the nominal xf = [0,02 0.005 0.005 0_005] with covariances matrices ranging
from 1 x 107514 to 3 x 107°I4. The procedure employed is the same as the previous example and results
are reported on 6.3 with 3 — o bounds plotted in addition to a set of Monte Carlo points generated
from a testing normal distribution. The results from the four methods presented in Figure 6.3, direct
or indirect, agree with the CUT quadrature method to compute the evolution of the moments of the
testing distribution. CUT samples in conjunction with the time-varying identified model using TVKO
yields the best results overall thanks to the optimality of the CUT sampling method with the higher
accuracy of the TVKO (of order 4 here).
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Figure 6.3: Uncertainty quantification analysis for the flutter of an aeroelastic wing

6.5.3 Two-Body Problem

The last example in this chapter is the famous two-body problem dynamics, given by
’f’ = _T_?’T’ (613)

in an inertial reference frame and using Cartesian coordinates. p = G(m1 + ms) and G is the universal
gravitational constant, 1 and r, are the position vector of the two bodies, m, and ms their respective

mass and r = r9 — 7y is the relative position vector between them. 300 trajectories are generated

around the nominal x§ = [7000 0 0 0 —1.0374090357 7,477128835] ! with covariances matrices
at 1 x I3 for position and 1 x 10~° for velocity. Five hours of data is recorded every 100 seconds. The
methodology to estimate the moments over time of an initial normal distribution is exactly similar as
before and results are reported on Figure 6.4. Two thousands Monte Carlo points are generated from
a testing normal distribution to visualize the overall shape of the distribution over time. Once again,
the four methods agree with the CUT quadrature method to compute the evolution of the moments
of the testing distribution. CUT samples in conjunction with the time-varying identified model using
TVKO offer the best accuracy (TVKO of order 4 here) although the data-driven method to estimate a

dynamical model for the moments provides similar accuracy for the second moment.
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Figure 6.4: Uncertainty quantification analysis for the two-body problem
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6.6 Conclusion

This chapter has presented several approaches to address the uncertainty quantification problem. Four
different methods to estimate the moments of the probability density function associated with the
dynamical states of a system are presented. Two of these methods are indirect methods as they first
estimate the process as a linear time-varying dynamical system and then propagate the initial moments,
or calculate the moments from quadrature; two other methods are qualified as direct methods as they
directly compute or estimate the dynamical process that governs the propagation of the moments for any
probability density function. Numerical simulations have been conducted to evaluate the error resulting
in the propagation of the moments associated with an initial Gaussian uncertainty. A data-driven
method where the dynamical system is approximated using TVKO combined with a quadrature method
perform the best overall. A direct data-driven method to estimate the dynamics governing the moments

propagation also performs strong.
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Chapter 7
Bilinear Koopman Operator

7.1 Introduction

Until this chapter only have we considered unforced dynamical processes. As presented in chapter 4,
the theory to identify a Koopman operator of any order given some data from an unforced dynamical
system is well developed. For majority of the problems, the exact Koopman operator that would describe
the evolution of the dynamical states in a lifting space linearly is of infinite dimension. In practice,
analysts consider a lifting space of finite dimension (adequately with given requirements and computing
capabilities) giving rise to a truncated Koopman operator. However, as presented in chapter 4, increasing
the order of the operator offers a guarantee to gain accuracy on the state prediction. When ERA/DMD
or TVERA are used to find a TTKO or TVKO there is no difficulties as the dynamics that govern the
evolution of lifting functions of the state are expressed with respect to these lifting functions themselves.
Selecting a basis of a function space as lifting functions provides the guarantee of the closure of the

lifting space, under the dynamics considered. This was well illustrated with the example
&= 22 (7.1)

and the infinite dimensional Koopman operator

il o100 ] [a] [ ]
2 00 20 a2 22

x=|z3| =10 0 0 3 22| = Kex, with x = |23 ] . (7.2)
74 0000 z? z*

Although the Koopman operator is of infinite dimension, increasing the order of the polynomial basis as

lifting functions guarantees a better accuracy in the prediction of the system’s states.
Now, let us consider the controlled version of Eq. (7.1), such that
i =2 +u. (7.3)
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Note that the controlled action appears linearly in Eq. (7.3). If the state x is considered as a measurement,
so does z2 and u since & = 22 4+ u. If 22 is considered as a measurement, so does =3 and zu since
22 = 2ix = 223 + 2zu. This new term, zu, presents two difficulties. The first major difficulty is that the
dynamics in a lifted space is not linear anymore, nor it is control affine and approximating the controlled
nonlinear system by a linear system with affine control would yield poor results. Some previous attempts
in this direction showed very mixed results [56,57] and the theory around the Koopman operator for
controlled system is not mature enough. Secondly, one could argue that a new type of lifting functions
could be introduced, function of both the state and the control vectors. This would lead to identify a
Koopman operator that would not only predict future values of the state but also future values of the

control input which is not desirable.

Instead, this chapter introduces the concept of bilinear Koopman operator. Bilinear state-space
model identification is of interest for two main reasons. Some physical systems are inherently bilinear
and bilinear models of high dimension can approximate a broad class of nonlinear systems. Nevertheless,
no well-established technique for bilinear system identification is available yet, even less in the context
of Koopman. The aim of this chapter is to offer a global overview of bilinear system identification and
to offer some perspectives and advances for bilinear system identification, working towards a bilinear

Koopman operator.

7.2 Bilinear OKID

The concept of deterministic system identification in context of the Observer/Kalman Identification
algorithm (OKID) has been introduced in [100] rewriting the bilinear model as an equivalent linear model
(ELM). The ELM can be identified with any linear identification method, from which the original bilinear
model is then recovered. In contrast with previous attempts for state-space bilinear system identification,
a benefit of the method in [100] is the freedom in choosing the form of input excitation as long as it
is sufficiently rich. The same advantage and the fact that data from a single experiment are sufficient
could potentially make the approach more appealing than the one adopted by other authors, based on
multiple pulses over multiple experiments. However, a proper version of the Observer/Kalman Identifi-
cation algorithm (OKID) adapted for bilinear systems is not formally outlined. The work presented in

this section aims to fill that gap and is a step forward in the identification of a bilinear Koopman operator.

Consider a discrete time-invariant bilinear system represented by

Tri1 = Axy + Z Nizpu; 1, + Buy, (7.4a)

i=1

Yy, = Cxy, + Duy, (7.4b)

together with an initial state vector xo, where x; € R", u; € R" and y, € R™ are the state, control
input and output vectors respectively. In the above experssion, u; ; represents the channel i of the
control input w,. The constant matrices A € R*"*", N; € R**", B € R"™*"™, C € R"*™ and D € R™*™

represent the internal operation of the linear system, and are used to determine the system’s response to
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any input. Let us write the first few terms from Eq. (7.4a):

x1 = Axzo + Ny, zous, 0 + Bug (7.5a)
xo = Az + Ny, xiu4, 1 + Bug
= A%z + AN, xou;, o + ABug + N;, (Azg + N;, xous, o + Buo) ui, 1 + Buy (7.5b)
= (A2 + AN, u4, 0 + Niy Augy 1 + NiQNiluil,Ouig,l) xo + ABuy + N;, Bu;, 110 + Buy
x3 = Az + N, xou;, 2 + Bug
= (A3 + A%Nj uiy 0 + ANy Augy 1+ ANizNiluihOuh@) xo + A*Bug + AN, Bugu;, 1 + ABuy
+ (Niy A%uiy 2 + Nig ANj wg, oty 2 + Nig Niy Aty 10352 + Nig Niy Niy w4, 0, 14,.2) To
+ N, ABu;, owo + Niy Ny, Bug, 1, 2ug + Niy Bug, ou1 + Bug
(7.5¢)

and observe how the number of parameters increase exponentially due to the fact that bilinear matrices
N; , N

i1s Niy, Niy, - -+ appear in different matrix products. Similarly to the classical OKID algorithm, let’s
assume that the initial condition is zero: &g = 0. We define a sequence of constant matrices, ﬁi, called

bilinear system Markov parameters or, in short, bilinear Markov parameters as

ho =D ho = D (7.6a)
hy =CB hi=CB (7.6b)
hy = CAB hy = CAB, CN;, B (7.6¢)
hy = CA’B hs = CA’B, CAN;, B, CN;, AB, CN;, N;, B (7.6d)
hy =CAB hy = CA®B, CA%N; B, CN;, A’B, CAN,;, AB, CAN;, N;,B, (7.6e)

CN;,N;,AB, CN;, AN,,B, CN; N;,N;, B

Remember the sequence on the left is the sequence of Markov parameters for a linear time-invariant
system. While the structure of the parameters is the same for both sequences, bilinear Markov parameters
are more numerous than classical Markov parameters and their number increases exponentially as time
increases. And not only the number of parameters to describe the I/0 relationship of a bilinear system
increases exponentially but a multi-dimensional input exacerbates the situation by increasing the counts
of matrices N;. Figure 7.1 compares the exponential growth of bilinear Markov parameters versus
the linear growth of Markov parameters. After just a few time steps, the number of bilinear Markov
parameters is so important that any attempt at identifying all those parameters is not really an option.
In a sense, this is what the authors in [100] have attempted to say without really pinpointing where this

exponential growth comes from.

Naturally, and very similarly to the classical OKID algorithm, rather than identifying the bilinear
Markov parameters which may exhibit very slow decay, one can use an asymptotically stable bilinear
observer to form a stable discrete state-space model for the system to be identified. With such a
procedure, bilinear Markov parameters (and thus the state-space model) and a corresponding observer
are determined simultaneously, similarly as in [18,19] for the linear case. One could attempt to implement

such an algorithm by following the steps of the OKID algorithm but in practice, in order to keep the size
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Figure 7.1: Exponential growth of bilinear Markov parameters vs. Linear growth of Markov parameters

of the problem tractable, only very low values for the observer order are admissible. Authors in [100]

realized this by only selecting observer orders of at most p = 8 in numerical simulations.

While actual implementation of a bilinear OKID (or bilinear time-varying OKID) with a random
input signal could be delivered without trouble by following the steps from the classical algorithms in
Appendix C and E the practical use of such algorithms is extremely limited without further analysis.
Even though several pathways for implementing such procedures with practical uses are being studied,
no satisfactory algorithm has been implemented at the time this dissertation is being written. However,
past work utilizing specialized input has been shown to be useful in the practical identification of
bilinear system matrices. In [11], the authors use a set of semi-pulses (pulses that last only for a few
time-steps) with non-zero initial condition for continuous bilinear system identification. In [101,102],
a single experiment consisting of several pulses with non-zero initial condition is used for continuous
bilinear system identification. A few years later, in [103], authors use a set of semi-pulses with zero
initial condition for continuous bilinear system identification. In [100], a single experiment with pulses
and nonzero initial condition is used for discrete bilinear system identification. The major common
denominator with all these methods is that it uses a specific type of input: pulses. Either as a set of short
experiments or as a single longer experiment comprised of several pulses, all of these methods exploit
the fact that pulses or semi-pulses make the control action vanish after a few time-steps, subsequently
making the terms N;x; vanish. This helps in keeping the number of parameters to identify low and
helps all of these algorithms to be compelling for practical use. Note that all of these methods identify
the bilinear dynamics exactly, up to noise levels (i.e. no approximation is made). In this dissertation we

wish to add one more brick to the existing bilinear system identification framework. The next section
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describes a procedure where a set of step inputs is being used with arbitrary initial condition for the
identification of a continuous bilinear system of equations. This method relies on the method presented

in [103] with some adjustments.

7.3 Continuous Bilinear System Identification with Specialized
Input

The algorithm presented in [103] relies on the central observation that the bilinear system of equations
becomes a linear time invariant system upon the application of constant forcing functions. The authors
exhibited the solution of the bilinear system of equations and showed that while the general input output
behavior is indeed nonlinear, one can generate an analytical solution for a set of specified inputs. The
generic algorithm is presented in details in [103] and the reader can refer to it for more details. The first
example in the numerical simulation section is a direct application of this algorithm. In this section, it
is desired to present a different version of this algorithm by identifying matrices A., N.,, C and the

initial condition x( for a bilinear dynamical system of the form

T =A.x + ZNci:cui, xy # 0, (7.7a)

i=1

y=_Czx. (7.7b)

Additionally, the algorithm outlined in this section uses a set of step inputs when other methods in
the literature are using pulses, with the only requirement that the step inputs have to go to zero at
some point in time and be zero for a few time steps. This weaker condition on the input provides more
flexibility to the the analyst when adjust the control action (also pulses are very difficult to apply to
real mechanical systems for example, with instances where pulse inputs can impair the system). The

step by step algorithm is presented below.

1. We suppose we perform a set of Ny + N1 X Ny experiments. This set is comprised of Ny random
initial condition response experiments from arbitrary xq, and for each of them, an additional set
of N5 forced response experiments is performed with step inputs. The requirement is that the step
inputs have to go to zero at some point in time and be zero for a few time steps, but can have any
profile before or after. We will assume that the input is nonzero at time step kg and is zero for p
time steps after that. Throughout the description of the procedure we will give conditions on Ny
and Ns.

2. Perform ERA (see chapter 2) on the first set of N; experiments. This allows to obtain a realization
of the pair (4, C) (and hence, A.) as well as the observability matrix O(p). For the identification
to capture the full dynamics, it is required that Ny > n.

3. For each group of Ns experiments, build matrices

— 1 2 N:
Yo = |yil yi? o g™ (7.8a)
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#1 #2 #N
Yk, Yio Yk, 2
#1 #2 #N.
y @) _ | Ykt Yot Yko+1
ko -
#1 #2 #N.
_yk‘o+p71 yk0+p71 yk‘ngprl_
Calculate the identified state at time kg
LTk, = éYko
and the matrix
1 AP L (N2) 1 1 i
F= A—tlog <O Vi V@, A,
4. Repeat the procedure N; times and populate the matrix
N, = {F#l 2 F#Nl] ,
In parallel, build the matrix
[ 41 #2 4N, |
Iul,k‘[) Iul,k‘() Iu17k502
#1 #2 #N
y(V2) Tug, — Tuyy Iug,koz
ko - .
#1 #2 #N.
_Iunk0 Iur,k0 Iur,ko2
The identified bilinear matrices Nci are
Y Y ( =N V'(N2)]L
NCI ch T NGT - ¢ ko '

The matrix Vk(ON"’) is invertible if full rank hence Ny > r and a rich input.

(7.8b)

(7.10)

(7.11)

(7.12)

(7.13)

5. Initial condition & can then be identified similarly as in the ERA procedure solving a least-squares

problem.

That procedure will be used in subsequent sections for bilinear system identification and sensitivity

analysis.

7.4 Numerical Simulations

7.4.1 Example with Unstable Linear Part

The procedure for bilinear system identification highlighted in [103] is applied to an example where

the linear part of the bilinear system matrix is unstable. The synthetic continuous bilinear dynamical
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system given in its state-space form by

2
&(t) = Ax(t) + Y Ne,a(t)ui(t) + Boult) (7.14a)
=1
y(t) = Cx(t) + Du(t) (7.14b)
with
0 1 0 1 -1 0 00 1]
Ac=1-1 0 0|, No=10 2 1|, Ne=11 0 1|, (7.15)
0 0 0.3 1 3 4 4 2 1]
1 0 -
1 0 1 0 0
B.=10 2|, C= , D= . (7.16)
11 2 0 0

The procedure is applied with N; = No = 10 and a frequency of acquisition f = 20 Hz for a total time
of 5 seconds. As is the case for linear systems, the realized system matrices are not unique, because the
state space description is not unique. However, the input/output mapping should be unique and the
linear part of the identified system matrix should have the same eigenvalues as the true system matrix.

The errors in the system matrix eigenvalues (between true and identified) are

H/\ (A) — A (Ac> ’ ~ 1012 (7.17a)
H)\(Ncl) “A (N)H ~ 1012 (7.17b)
AN(Ngy) = AN, )|| ~ 10712 (7.17¢)
| (%)

The identified system was subject to some test inputs and the response from the true system to the

same test inputs was performed. The test inputs applied to the plants are

sin(7t)
u(t) = . (7.18)
cos(10¢)

Output profiles obtained from the true and identified systems are visualized in Figure 7.2 and the SVD
plot is displayed in Figure 7.3.

7.4.2 Mass-Spring-Damper System with Varying Stiffness

Consider a mass-spring-damper system with one degree of freedom with no forcing input and a time-

varying stiffness k(t):

mi + ck + k(t)z = 0. (7.19)
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This system can be seen as a continuous bilinear dynamical system, given in its state-space form by

z(t) = Acx(t) + Nex(t)u(t) (7.20a)
y(t) = Cx(t) (7.20b)
u(t) = k(t) (7.20c)
with
0 1 0 0
A, = , N.= , C= [1 0}. (7.21)
0 —c¢/m —1/m 0
The parameters are given by
T
m=2c¢=05 o= [2 _1} . (7.22)

The procedure described earlier is applied with N; = No = 10 and a frequency of acquisition f = 10 Hz
for a total time of 20 seconds. The errors in the system matrix eigenvalues (between true and identified)

are

Jhtao - (4)
[RRNE

’ ~ 10711, (7.23)

‘ ~ 10711, (7.24)

As is evident, the eigenvalues of the linear part of the identified system and the full nonlinear response
were again captured with high precision in example. The identified system was subject to some test
input k(t) = 5+ 4 cos(2t) and the response from the true system to the same test input was performed.
Output profiles obtained from the true and identified systems are visualized in Figure 7.4 and SVD plot
in Figure 7.5.

7.4.3 Chain Oscillator

The schematic of an n-degree-of-freedom, nonlinear oscillator chain is given Figure 7.6, where each spring
has linear stiffness k; [N/m| and cubic stiffness #; [N/m?|, each damper has linear damping coefficient c;
[N.s/m] and each mass a mass m; ([kg]). The equations of motion for the n-mass oscillator chain, are

given by
M&+ ¢+ Kz + f(x) =0, x(t) eR" (7.25)
where

M= diag(mlv ma,:--- 7mn) (726)
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and f(x) = kf32%3 where f5

3 — (29 — x1)3

(w2 —1)° — (23 — 22)°

(zn — xn—1)3 - xi

c1+c2 —C2
—C2 cat+c3  —c3
—Cn—1 Cp-—1 + Cn —Cn
L —Cn Cn+1_
k1 + ks —ko
—ko ko +ks —k3
*kn—l kn—l + kn *kn
L _kn kn+1_
e R g a sparse cubic-coefficients array such that

e R"

(7.27)

(7.28)

(7.29)

For time being, it is assumed that x = 0 and that the stiffness matrix is deviated from a nominal K:

K = Ko + AK.

Thus, the equations of motion are

X

i

n+1

= Acx+ Y NexAk;

i=1

110

(7.30)

(7.31)

7

SSINSaNaY
NNNNNNNNY



with

[ O’I’L n In n
A, = ) | e gEmxen (7.32)
_—MflKo -M~¢
On n O’I’L n
N, =|"" ) (7.33)
_Nc;, Onxn
-L 00 0
ma
0 0 0 0
Noe=|0 00 -0 (7.34)
0 0 0 0
ST ;
maq mi
L1 9 0
mao mo
N,=10 0 0 -+ 0 (7.35)
0 0 0 0]
0 0 0 0
1 1
0 — = 0
Ney=10 L —L ... 0 (7.36)
0 0 0 0]
000 - 0
00 0 0
Nepy=10 00 -+ 0 (7.37)
000 - —5-

In addition, we suppose we have access to the position of the n masses through the measurement equation
y=Cx, C=1I (7.38)

In this example we suppose n = 5. After identification, we have a good match on the eigenvalues of

A. and bilinear matrices N,:

(SRS

’ ~ 10713 (7.39)
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v -2 ()

' ~ 1077 (7.40)

as well as very good identification results (see Figure 7.7). The testing is performed by randomly

switching stiffnesses by intervals of 5 seconds around a nominal of 20.

For this example, it is also desired to analyze the sensitivity of the measured outputs with respect to
the stiffnesses k;(t). First, the general equations for sensitivity analysis from a bilinear system identi-
fication approach will be outlined; the method will then be applied to the chain oscillator identified model.

For a generic nonlinear dynamical system,
&(t) = f(x,0) (7.41)

we define the sensitivity of the state with respect to the parameter @ € R" by

() = g%’(t). (7.42)

The differential equation that governs the evolution of this sensitivity matrix ¥ is thus

. Of ofdx,. Of  Of
V0= 56 T awoe " 6 T oa ) (743)

For a bilinear dynamical system as represented in Eq. (7.7), we simply have

of

0 [Nclsc Ne,xz - Ncraz} (7.44a)
a T

—~ =A N, 0;. .44
g = At ; e.0; (7.44b)

Note that if f(x,0) = Oz, U(t) = x + 0V(1).

Leverage bilinear system identification techniques by getting an estimate for matrices A, and N, it
is possible to obtain an estimate of ¥ over time thus getting an estimate of the sensitivity of the state
with respect to the parameter vector. The sensitivity of the state vector with respect to the first input

k1(¢) is displayed Figure 7.8. The accurate results confirm the validity of the bilinear-based approach.

7.4.4 Hovering Helicopter

The example of a hovering helicopter under wind disturbance as well as model parameter uncertainties

[24,28] is considered. The dynamics of the system are given by
T = Az + B0 + Byuy (7.45)
where

T
= \up qn On y| > (7.46)
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, (7.47)

N
I
o o o o

: (7.48)

B, = : (7.49)

uyp, |ft/s] represents the horizontal velocity of the helicopter, 6 [x10~2 rad| represents the pitch angle,
qn [x1072 rad/s| represents the pitch angular velocity and y [ft] represents the horizontal perturbation
from a ground point reference. g corresponds to the acceleration due to gravity and is equal to 0.322. ¢
represents the control input to the system. w,, represents the wind disturbance on the helicopter and is
modeled as a zero mean Gaussian white noise with variance o2, = 18.

The model comprises of six model parameters p; to pg. The first four parameters p; “p4 represent the
aerodynamic stability derivatives while the parameters ps and pg represent the aerodynamic control
derivatives. For identification purposes, initial conditions to the system are assumed to be zero: xy = 0.

The control law implemented is that of a full state feedback [24] where

0 =—Kua, (7.50)

T
and K = [1,9890 0.2560 0.7589 1| . On substituting the control law in the original system, one

obtains the closed-loop stochastic system

& = A + By (7.51)

T
where Ac = A — BK. Similar to Ref. [24], it is assumed that parameters p = |p; p, ps p4} are

uncertain. Eq. 7.51 can be re-written in the form of a bilinear system

4
& =Ax+» Nezu; + Beu, (7.52)
=1
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T
with the augmented input vector being u = |p; py ps ps  Pruw p3uw} and the continuous

time-invariant system matrices defines as

—psk1  —pske —g—psks —psky
i- —pek1  —pek2 —peks —peka , (7.53)
0 1 0 0
1 0 0 0
1 0 0 O 01 0 O
0 0 0 O 0 0 0 O
N, = , Ny = , (7.54)
0 0 0 O 0 0 0 O
0O 0 0 O 0 0 0 O
0 0 0 O 0 0 0 O
1 0 0 O 01 0 O
Ney = ; Ney = , (7.55)
0 0 0 O 0 0 0 O
0 0 0 O 0 0 0 O
0 0 0 O 0 0 0 O
0 0 0 O 0 0 0 O
Ney = s Neg = , (7.56)
0 0 0 O 0 0 0 O
0 0 0 O 0 0 0 O
0O 00 0 -1 0
00 0 0 0 -1
B. = (7.57)
00 0 0 O 0
00 0 0 O 0

For testing, the parameters p; “ps are monotonically varied between the lower and upper bounds

T

plb:{*0.0488 0.0013 0.126 73.3535} : (7.58)
T

pub=[—0.0026 0.0247 2.394 —0.1765} : (7.59)

Results of the identification are presented Figure 7.9. With eigenvalues of A. and bilinear matrices N,

matching up to machine precision,

Jhtaa - (4)
x5

A, ’ ~ 10712 (7.60)
N,

’ ~ 10712 (7.61)

116



the identified bilinear model is able to reproduce the dynamics of the true model. Figure 7.10 shows the

sensitivity of the state vector with respect to the first parameter p;.

7.4.5 Controlled Duffing Oscillator

This example corresponds to the controlled nonlinear Duffing oscillator governed by the following

equations
T =y+ giu, (7.62a)
= —0y — ax — Bx> + gausg (7.62b)
with parameters « = 1, § = —0.1, g1 = 0 and g5 = 1. For this example, we want to study the capabilities

of a bilinear system to approximate nonlinear dynamics in presence of an external input. First, it is
desired to visualize the effect of the nonlinearity coefficient 8 on the identification capabilities of bilinear
system identification algorithms. Figures 7.11(a) to 7.11(c) show the predicted trajectories for different
values of 8, with a testing input of us(¢) = 0.05 cos(27t + 27/3). Even though the trajectories are very
similar (the domain of interest is centered at 0 with radius of 0.02, making the nonlinear coefficient
almost inconsequential), the nonlinear term has a huge impact on the approximation capabilities. A
classic bilinear approach is thus valid for small nonlinearities in contained domains, but has the domain

of interest grows and the nonlinear term becomes more and more significant, an other approach is desired.

One could augment the measurement vector with additional lifting functions, giving rise to a bilinear
Koopman operator. Figures 7.12(a) to 7.12(f) present the approximation capabilities with increasing
order of the bilinear Koopman operator. Reaching order 6, or a dimension of the operator of 27, the
approximation is excellent, confirming that a bilinear system identification approach in conjunction with

the Koopman framework is a valid method to approximate controlled nonlinear systems.

7.4.6 Controlled Van Der Pol Oscillator

This example corresponds to the controlled Van Der Pol oscillator governed by the following equations

T =y+ giu1, (7.63a)
§=n(l —2*)y -+ gaug (7.63b)
with g = 0.8, g1 =0 and go = 1. Similarly as the previous example, Figures 7.13(a) to 7.13(f) present

the approximation capabilities with increasing order of the bilinear Koopman operator, with a testing
input of us(t) = 0.5 cos(2nt 5+ 27/3).

7.5 Conclusion

This chapter has introduced the concept of bilinear Koopman operator. Controlled systems in the
context of Koopman yield bilinear dynamics in a lifted space. Since some physical systems are inherently
bilinear and bilinear models of high dimension can approximate a broad class of nonlinear systems,

this chapter has offered some perspectives and advances for bilinear system identification, working
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Figure 7.9: Prediction accuracy for the hovering helicopter
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Figure 7.13: Varying orders of Koopman bilinear system identification of the nonlinear Van Der Pol
oscillator with = 0.8

towards a bilinear Koopman operator. Several numerical simulations confirm the growing interest
in bilinear system identification and validate the methods and algorithms presented in this chapter.
The same framework is employed for sensitivity analysis of nonlinear systems where it is desired to

estimate the variation of a measured output given the deviation of a constitutive parameter of the system.

The methods developed in this chapter and more generally in this dissertation assume good quality
data - or at least good enough quality - so that the identified model is reliable. While it is not the
objective here to define good enough data, the next chapter is aimed at opening the discussion to mitigate
noise in the data. More specifically, two robust and reliable methods are presented and validated on
several numerical simulations to enhance system identification algorithms in the presence of high noise

levels.
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Chapter 8
Mitigating Noise in the Data

8.1 Introduction

This dissertation has introduced several data-driven identification methods and algorithms. However,
the main difficulty in linear and nonlinear system identification applications stems from the interplay of
noise and unmodeled dynamics. Noise, finite length of data, and parameters variation are some of the
issues that limit the application of such methods and there are many instances when this limitation is
significant enough that it becomes necessary to deal with situations where no model in the model set
can adequately describe the real system behavior. This chapter introduces a data-correlation approach
to the time-varying eigensystem realization algorithm (TVERA /DC) has potential way to temper the

effect of noise.

Secondly, we recall that the main role of subspace identification methods is to find a smaller space
in which the dynamics of a true system are evolving and the key step in this subspace identification
method is a singular value decomposition (SVD) of the Hankel matrix used to estimate the order of the
system. Due to measurement noise, nonlinearity, and computer round-off, the Hankel matrix will usually
be of full rank which does not, in general, equal the true order of the system under test. The reliance on
the SVD for the low-rank approximation makes it difficult to seamlessly apply the subspace methods
to problems with important levels of noise. This chapter also investigates a method to minimize the
nuclear norm of the Hankel matrix as a way to offer an interesting alternative as a heuristic for low-rank
approximation problems where a clear-cut criterion for model selection cannot be deduced from the SVD.
Once the dimension of this subspace is found, a projected model is derived based on a factorization
of a structured Hankel matrix constructed from input-output data. To obtain this low rank model, a
nuclear norm minimization method for estimating the dimension of the system matrices of a linear time
invariant (LTT) state-space model in the presence of measurement noise is presented. In the second part
of this chapter, we will consider two numerical examples of different dimension with various levels of

noise and show the efficacy of the proposed approach.
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8.2 Subspace System Identification Including Data Correlations

While classical state-space realization techniques are, in essence, a least-squares fit to the pulse response
measurements, introducing output auto-correlation and cross-correlations over a defined number of
lag values has the potential to temper the effect of noise. This section introduces a data-correlation
approach to the time-varying eigensystem realization algorithm (TVERA/DC) and we will see that the
bias terms affecting the TVERA when "white" measurement noise is present can be omitted in the
TVERA /DC by properly tuning some of the parameters. First, this section will explain the basic concepts
of data-correlation for time-invariant system realization (ERA/DC) and will provide a description of
this procedure adapted for time-varying system identification, introducing the time-varying eigensystem
realization algorithm with data-correlation (TVERA/DC).

Recall that a discrete-time invariant linear system can be represented by

Ti1 = Axy + Buy (8.1a)
Yy, = Cxp + Duy, (8.1b)

together with an initial state vector xg, where x, € R", ur € R” and y;, € R are the state, control
input and output vectors respectively. The constant matrices A € R**™, B € R™*", C € R™™*™ and
D € R™™ represent the internal operation of the linear system, and are used to determine the system’s

response to any input.

8.2.1 Time-Invariant Linear System Identification: the Eigensystem Realization
Algorithm with Data Correlation (ERA/DC)

The eigensystem realization algorithm with data correlations (ERA/DC) includes an additional fit to
output correlations whereas the ERA is basically a least-square fit to the pulse response measurements
only. The bias terms affecting the ERA when noise is present can, in principle, be omitted in the
ERA/DC by properly tuning some of the parameters. The computational steps of the ERA/DC are

outlined in this section.

8.2.1.1 Block Correlation Hankel Matrices

The ERA method with data correlation requires the definition of a square matrix of order v = pm,

Runu(k)=H(k)H(0)" (8.2)
- 4 - ST
hi+1  hry2 - Ritq hi  hy - hq
_ hiv2  hres - Prygt1 ha hy - hgp (®3)
_hk+p Prypr - hk+p+q71_ _hp hptr - hp+q*1_
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= i=1 =1 =1 . (84)

q q q
T T T
E Pitpti-1h; E Pitpri-1hipy - E Pitpri—1hy iy

Li=1 i=1 i=1 J

where hj are Markov parameters in the case of forced systems or directly outputs of the system in the
case of autonomous systems. Hankel matrices H (k) are defined the same way as in the ERA. Note that
the data correlation matrix R g g (k) can be smaller in size than the Hankel matrix H (k) if gr < pm = .

For the case when k = 0, the correlation matrix Rgrrr(0) becomes

Ruu(0)=H(0)H(0)" (8.5)
- - -T
hi  hy - hy hi  hy - hy
ho  hy o+ hgis ho  hy - hgn
_ . ’ ! (8.6)
_hp hp+1 e hp+q—1 _hp hp+1 T hp+q—1_
q q 7
> hih! Z hihloy o Y hih)
é:l (’; 1
Z hiv1h] Z hivihiy, Z hivihy i
= | i=1 i=1 i=1 (8.7)
q q q
D hpriab] Y hpriablyy o Y hppiahg
Li=1 =1 =1 J

q
The matrix R (0) consists of auto-correlations of Markov parameters such as Z h;h; and cross-

i=1
q

correlations such as Z hz-hiT_H at lag time values in the range £p, summed over ¢ values. If noises in
i=1
the Markov parameters (or outputs) are not correlated, the correlation matrix R g pr(0) will contain less

noise than the Hankel matrix H (0).

In terms of controllability and observability matrices, R g (k) can be written as
Run(k) = O(p)AkR(q)R(Q)To(p)—r — O(zz)AkR(v)7 (8.8)

where R — ROR@ o®@ "
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The data correlation matrix R g g (k) can be used to form a block correlation Hankel matrix

T\’,HH(k) 'R,HH(]{I-FT) RHH(k-‘rCT)
Rua(k+T) Ruw(k+21) oo Rup(k+ (C+1)7)
H(k) =
_RHH(k+§7') 'R,HH(kJr(erl)T) RHH(IC+(£+C)T)_
[ ow® 1 (8.9)
o® AT
— Ak [R(’Y) ATRO ... ASTRO)
0@ péT
= 0© A R
For the case when k = 0,
Ruu(0) Ruu(T) - Ruua(Cr)
RHH(T) RHH(QT) RHH((C—FI)T)
H(0) =
Ruu(ér) Rua(((+17) - Rua((§+07))
[ o ] (8.10)
o® AT
= RO ATRO) .. ATRO)
0P A&
= 0© RO,

7 is an integer chosen to chosen to prevent significant overlap of adjacent correlation blocks. The matrices

R© and O® are called the block correlation controllability and observability matrices.

8.2.1.2 Hankel Norm Approximation

Similarly to the ERA, the ERA/DC process continues with the factorization of the block correlation

matrix H(0) using singular value decomposition so that

» o m "
H(0) =USYT = {u(n) u“ﬂ v —yumempm’ L 05007 o u(")z(")v(")—r’
N———

0o xO| [yoT -
(8.11)
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and
0 — ymxm!/?

-
2(0) = u(n)z(n)v(n) — 0RO
© RO — s 2,m T

Again, this choice makes both 0® and R balanced.

8.2.1.3 Minimum Realization

From Eq. (8.10) we have directly

0P — ENT0® — g0 Tyymxnm/?

From Eq. (8.10), an expression of R can be found

R@ — O(p)TH(O) _ [l,—}(v)TZ/{(n)z(n)1/2:|TI{(O)7

and a realization is shown to be

A=09"qMHROT = ™ _1 /90 1)y xm T2

B ROEM _ E(V)Tu(ﬂ)z(ﬂ)lﬂr

H(0)E",

1/2

Tumnm!?

Cc—gm ow _ gmT g6

(8.12)

(8.13)

(8.14)

(8.15a)
(8.15b)

(8.15¢)
(8.15d)

8.2.2 Time-Varying Linear System Identification: the Time-Varying Eigensys-

tem Realization Algorithm with Data-Correlation (TVERA/DC)

From a perspective of generalizing the classical Ho-Kalman approach with ERA and ERA/DC, this paper
develops an extension of the time-varying eigensystem realization algorithm (TVERA) by including data
correlations in the process (TVERA/DC). With the assumption that noises in data are not correlated,

the resulting procedure takes advantage of the fact that auto-correlation and cross-correlation between

outputs will contain less noise than original outputs.

Consider that we obtained M x N experiments, arranged in M batches of N experiments. Similarly

as the TVERA procedure [28,29], form the initial condition response experiments Hankel matrix

15 2.5 N.j
#1,5 #2,5 #N,j
~ (p,N),#5j Yit1 Yie+r:1 0 Yrp P
H](Cp )#J: -‘r + . + :O[({p))(l(c]\7)~,:i'$£]7 le
#1.J #2,J #N.j
Ye4p—1 Yr4p-1 " Yrqp—1]
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O;f ) € RPMX7 g the observability matrix at time k and X ,(CN)’j is the state variable ensemble matrix of

batch j at time k, i.e. the state initial condition responses of experiments of batch j at time k. Whereas

the standard TVERA method proceeds using H L

(p,N).j

" to derive state-space matrices Ay and Cj, the

TVERA method with data correlations requires the definition of a square matrix ’k?] € RP™XP™ guch

that for j =1... M we have

~#i = (p.N)j = (pN)GT

R, =H, H,
- 1r 1T
1, 2,j N,j 1,5 2,j N,j
yk# J yk# J yzﬁ J yaoéﬁ J yo# J ya# J
#1,5 #2,7 #N,j #1,5 #2,5 #N,j
_ yk+1j yk+1j yk+1j (T THE R T
#1,j #2,j #N,j #1,j #2,5 #N,j
_yk+;)J—1 yk—i—pj—l yk—i—pj—l_ _yp71j ypflj ypflj_
[ N .. LT N . T N . ,.T_
Z yk#m y#m Z yk#z,Jyal#w Z yk#m y;#_zlj
i=1 i=1 i=1
N . LT N . T N . T
DR T A R 7 £ T > iyt
= | i=1 i=1 i=1
N T T N T
#1,J #1,J #1,J #1,5 #1,J #1,J
D_vip-wl™ vyl >_ vyt
Li=1 i=1 i=1 i
Let a £ x M block correlation Hankel matrix be formed as
~ #1 ~ #2 ~ #M ]
Ry R] Ry o
p 1 p 2 p M (p)
R R R 0]
- (&,M k+ k+ k+ k - -
e | R T R I [T
= #1 = #2 = #M (p)
Ri+e-1r Rige-r Rite-1r]  |[Okte—1)r]
&) (M)
= Ol(c )Xk
with Xép)’#J = X}cN)’#jXéN)’#jTO(()p)T € R™*P™ for j =1... M. Now, note that
o (P),#J N),#j ~(N),#5T T N),#j v (N),#57T T o (), #J .
Xk+1 — ch-&-)l #]X(() ). #J O(()P) — AkX](c ) #JX(() ), #3J Oép) — Aka , j = 1...

The matrix A; at time k can be derived as

7 o (M) & (M)t

Ak- = Xk)-‘rl'Xk 5
and the output matrix Cj, as

Cr = O,(f)[l im, ).
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Figure 8.1: Point mass in a rotating tube setup

Next section will present the approximation capabilities of these two algorithms with respect to their

original versions where data-correlation is not included.

8.2.3 Dynamics of a Point Mass in a Rotating Tube

8.2.3.1 Model Description

As an illustrative example for the TVERA /DC algorithm, let’s consider the dynamics of a point mass in

a rotating tube governed by a second order differential equation given by

0i(t) = (9’2(15) — Z) or(t) + u(t) + 16%(t) (8.23)

where the new variable dr(t) = r(t) — [ has been introduced, together with the definition of [, as the
free length of the spring (when no force is applied on it, i.e., Hooke’s Law applies as Fy = —kor). The
function u(t) is the radial control force applied on the point mass, and the parameters k and m are the
spring stiffness and the mass of the point mass of interest. The time variation in this linear system is
brought about by the profile of the angular velocity of the rotating tube H(t) Choosing the origin of
the coordinate system at the position rg = [ (with no loss of generality), the second order differential

equation is given by

. k
57 (t) = (92(t) — > Sr(t) + ult) (8.24)
m
where the redefinition of the origin renders the system linear time varying without any extra forcing
functions. In the first order state space form (z1(t) = or(t), x2(t) = d7(t)), the equations can be written

as

oy (t) 0 1| |@(t) 0
= b + u(t) = A()z(t) + B(t)u(t) (8.25)
@o(t) 02(t) — — 0| |ao2(t) 1
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together with the measurement equations

y1(t) _r o (1) + 0 u(t) (8.26)

Yya(t) 0 1| |22(t) 1

To compare with the identified models, analytical discrete-time models were also generated by computing
the state transition matrix (equivalent Ay) and the convolution integrals (equivalent By with a zero
order hold assumption on the inputs). Because the system matrices are time varying, matrix differential

equations are given by

B(t,tn) = AOD(t ), (tte) = AT, t) + 1, (8.27)

Yt € [tk, tk+1], with initial conditions

1 0 0 O
0 1 0 0
such that
Ay = O(tkr1,tr), By, = U(tgt1,tk)B, (8.29)

would represent the equivalent discrete-time varying system (true model). For the current investigation,
the time variation profile of (t) = 3 sin(3t), with the mass and stiffness of the system were chosen to be

m =1 and k = 10, respectively.

8.2.3.2 Linear Time-Varying Reduced-Order Model using TVERA /DC

The time interval of interest was held to be 40 seconds, with the discretization sampling frequency set to
be 10 Hz. The training is performed on 20 trajectories generated from 20 random initial conditions. A
white noise of mean zero and covariance 0.027,, is added to the measurements. Testing of the identified
models from both algorithms TVERA and TVERA /DC is performed on 10 random trajectories, not
included in the training set. Figure 8.2 shows the comparison in identification performance. The
approximation from TVERA degrades as time increases and while it is able to preserve the frequency
content, the amplitude of the identified signal is off after just a few seconds. On the other hand, the
signal reconstructed from the TVERA /DC procedure is able to match the true trajectory, up to the
noise content. Tables 8.1 and 8.2 present the RMS and absolute errors in prediction for models from the

two algorithms.

Table 8.1: RMS error for 10 trials

TVERA | TVERA/DC

1.4-1071 5.5-1072
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Figure 8.2: Linear time-varying model identification performance on a testing trajectory

Table 8.2: Absolute error for 10 trials

TVERA | TVERA/DC

1.1-1071 4.4-1072

As a second motivational case to support this new method, the identification of the vibrational

characteristics of a space structure is considered.

8.2.4 Model of a Flexible Space Structure

8.2.4.1 Coupled Rigid and Flexible Body Model

For the purpose of obtaining output data for the various algorithms used in this paper, we consider
the vibrations of the spacecraft depicted in Figure 8.3. This spacecraft is a large, flexible structure
whose vibrational modes we wish to study. The structure is modeled as a rigid frame with a flexible
membrane clamped within. It is readily apparent that the dynamics of both a rigid and flexible body are
well defined; however, this model is simply used as a basis of comparison for the different data-driven
algorithms introduced later in this paper. In reality, a similar spacecraft would not have such simple
dynamics.

The coupled equations of motion for this model are derived based on the Lagrangian formulation
presented in [104], [105] and are omitted from this paper for brevity’s sake. Ouly the resulting equation
of motion related to the motion of the membrane is necessary for this analysis. The reference frames
and relevant vectors are depicted in Figure 8.3. The black {2,3, I%} frame is the inertial-reference frame
and the red {by, by, bs} frame is the body-fixed frame. Now that the basis vectors are defined, we move

on to deriving the dynamics of the system.
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Figure 8.3: Spacecraft model and frame/vector definitions

Dynamics

The position vectors shown in Figure 8.3 are defined as

rre = Xby + Yby + Zbs (8.30)
TFlex = TRB T TMem (8.31)
TFlex = TRB T xby + y52 + 77133

= (X +2)b1 + (Y + y)ba + (Z +1)bs (8.32)

where {z,y,n} is the position of any membrane element relative to the rigid body’s center of mass
written in body-fixed coordinates, and {X,Y, Z} are the inertial components of the center of mass of
the rigid frame also written in body-fixed coordinates.

The full set of differential equations of motion for the spacecraft are omitted from this paper for

brevity’s sake. For the purposes of this paper, the only necessary equation of motion is

b as ba az
/ / [p(# Fiez) - by — PV?n]dedy = / / fdxdy (8.33)
by a1 by aiy

since our goal is to identify the dynamics of the membrane, not the rigid body dynamics. Note that P is
the tension in the membrane, p is the two-dimensional density of the membrane, and f is an arbitrary
distributed load. The integral bounds a; /as and by /by are the x and y bounds of the membrane relative
to its geometric center, respectively. Note that we are only considering displacement normal to the

membrane’s surface, corresponding to the variable 7. This meaning there are no transverse vibrations

131



in the b; and b, directions. In the next section, an approach to solving the above partial differential

equation is shown.
Method of Weighted Residuals

The partial-differential equation shown in equation (8.33) details the motion of the model’s membrane
and can be solved numerically by converting it to a system of ordinary differential equations. This
is achieved via the Galerkin method of weighted residuals [106]. The displacement of the membrane,

n(z,y,t), is written as the double sum
n n
n(z,y,t) = Z Z bij(@,y)qi; (t) (8.34)
i=1 j=1

where n? is the total number of assumed modes, ¢ij(x,y) are basis functions to be chosen by the user,
and g¢;;(t) are the corresponding modal amplitudes of ¢;;(x,y). The basis functions for ¢;;(z,y) are

chosen to be the known basis functions of a fully clamped membrane,

KL a.| . [jm b ..
¢ij(z,y) = sin [a(x - 2)} sin {b(y - 2)} i,7=1,2,...,n (8.35)
where a and b are the membrane’s width and height, respectively. For the rest of this paper, the double
indices will be dropped. Writing in terms of a single index avoids confusion. In the case of n = 2, we
refer to the modes [(1,1) (1,2) (2,1) (2,2)] instead as modes [1 2 3 4], respectively. This meaning,

¢i(z,y) == ¢jr(x,y) wherei=n(j—1)+k

where now ¢;(z,y) goes from 1 to n?. For the rest of this paper, n? is denoted as N and represents the
total number of assumed modes.

Inserting equation (8.35) into the expanded form of equation (8.33) leads to,

b2 a
/b / [Pl):’)(ﬁj + poilidj + pinyd; — pintd; — priwed; + p(—ws — wi)(¢igid;)
1 ai

A 8.36
Fpwswayd; + pwivad; + pwiwsrd; — Py, qip; — Pdyy iy — f¢5|dedy =0 (8.36)

i=12.,N j=12..,N

The derivation of the expression for # ., is omitted from this paper. In equation (8.36), {v1,v2,v3}
are the inertial velocities and {w;,ws,ws} are the angular velocities. Both velocities are written in the
body-fixed coordinate system.

Note that in equation (8.36), repeated indices, such as ¢;§;, represent the full summation of the
function we are approximating with our chosen basis functions, whereas ¢; represents the basis functions
being used as weighting functions in the Galerkin method of weighted residuals. As a result of this, we

now have a system of N ordinary differential equations instead of one partial differential equation. The
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system of equations defined in (8.36) can be rearranged into the following form:
Mg+ Kq=F (8.37)

where g € RV*! is a vector of the modal amplitudes. M, K, and F are defined as

= [ b / [pmsj}dmdy (8.:38)

b2 a
K= [ f { = (@ +wB)B5 — P(Gaa, + By )5 | dady (8.39)
bl ai
b2 as "
F; = / {f + (=73 — W1y + W + Vw2 — Waway — wive — wiwsT) | pjdrdy (8.40)
bl al

where M € RV*N K ¢ RV*N and F € RV*!. Here, i and j represent the (i*", j'*) element of each
matrix and both go from 1 to N. Note that there is no repeated index here so there is no summation in
these definitions. In the next section, we will utilize the mass-spring form of equation (8.37) to obtain a

state-space model for our system.
State-Space Model

By assuming free vibrations (F; = 0), equation (8.37) can be written as a first-order, continuous,

time-varying, linear system of the form:

@ = A () (8.41)
y=Cx (8.42)

where € R?2V X1 is the state vector of time-varying modal amplitudes and their time derivatives and

y € R™*! is the acceleration output vector. The system matrices are written as,

ON><N IN><N
A, = (8.43)
fM’lK(t) ONxN

o1 (z,m) .. on(x1,y1)
C= oMk omeN] O = ; : (8.44)

¢1((Em7ym) ¢N(1'm7ym)

where I and O are the identity and zero matrices, respectively. M and K are the mass and stiffness
matrices defined in equations (8.38) and (8.39), respectively. Note that the only time-varying aspect of
the system comes from the w? + w3 term in K (assuming membrane parameters are constant). The
output for this system is the acceleration of the membrane at m locations; representing m sensors
distributed across the membrane. This is visualized in Figure 8.4 with a top-down view of the membrane.
The black dashed line represents the border of the membrane, the black circle the geometric center, and

the red dots the accelerometers.

133



15 T T T T T
10 F e e 1 -
| L L L L - |
| |
| |
br | '] '] '] - - | 7]
| |
% | |
£ of | w . @ . o | :
= | |
| |
| L L] L] - L |
3T | | ]
| |
| L] L] [ ] L] [ ] |
10 F L | N
-15 : ' : ! :
-16 =10 -5 0 5 10 15

meters

Figure 8.4: Example of sensor placement

For the results in this paper, the first four functions of ¢;;(z,y), defined in equation (8.35), were
chosen as the basis functions (i.e. i = j = 2). This implies A, € R8%®. We can then discretize equations
Eq. (8.41) and Eq. (8.42) as

LTr+1 = Ak:tk (845)

Yy, = Crg (8.46)

where Ay is the state-transition matrix between time steps, ®(k + 1, k), and Cy = C. We now have our
reference discrete state-space model we wish to identify via data-driven modeling. Now, we must utilize

this model to obtain output data.

Initial Conditions

In order to correctly identify all the dynamics of our derived model, we need to ensure that all
modes are excited in our output data. To do this, we choose the initial conditions of our state to be

linear combinations of all four assumed flexible body modes, which are the columns of the eigenvector
matrix ¢ = [(;51, boy- sy, ¢2N] obtained from the characteristic equation |A — \;| ¢;. The initial
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conditions are chosen to be

Lo, = 7"1(¢1 + ¢2) + 7'2((7-’73 + ¢74) + 7“3(¢5 + ¢6) + 7’4(¢7 + ¢8) i=12,...,K (8'47)

where 71 through r4 are random scalars drawn from a normal distribution and K is chosen by the user
to ensure enough output data is obtained to capture the order of the system. In the absence of a real

input, the initial conditions act as a sort of input instead.

8.2.4.2 Data Acquisition and Setup Description

To obtain the output data for the system, the continuous state-space model was numerically integrated
with MATLAB’s ode45 function with the initial conditions defined in the previous section. The following
table details the parameter values used in simulation. Note that the two different values of w;/wsy
correspond to two separate cases of a time-invariant and time-varying system. All other parameters

remain the same across the two.

N a b p P w1 /wa wy/we

20m | 20m | 5 %4 | 200 N | 0.5 72 | 0.1sin(t) + 0.3 722

m

As for the sensor error, the noise was chosen to have a normal distribution with a standard deviation
equal to 5% of the max acceleration the true-system experienced (different for each initial condition

case). The different levels of noise will be used for comparison of the different algorithms.

8.2.4.3 Linear Time-Invariant Reduced-Order Model using ERA /DC

First, linear models are derived from data using the algorithms outlined in the previous section. A
hundred random trajectories are considered for the identification, with testing performed on an additional
set of 20 trajectories, different from training. Figure 8.5 shows the performance of the two algorithms on
those testing trajectories (average on the 20 trajectories of the testing set). The noise level is indicated as
a reference and serves as a lower bound for the identification error. By carefully selecting identification
parameters, the eigensystem realization algorithm with data-correlation (ERA/DC) performs up to one
order of magnitude better than its ERA counterpart. While non-linearities and noise (rogue sensor
measurements here) degrade the approximation capabilities of the ERA, the ERA/DC is less sensitive
to noise in the data thanks to correlation calculations. While the relative error induced by the identified
model from ERA grows over time and is impacted by measurement noise, the identified model from
ERA/DC yields significantly less approximation error and sometimes correctly approximates the response
down to - a;most - the non-compressible noise level. The average relative error for the 20 test trials for
ERA is at 1.1 - 10° while the error from ERA/DC is 7.4 - 1072, using the same data set. Models for
different of parameter 7 have been generated and average errors for the 20 test trajectories are presented
in Table 8.3. This confirms that the bias terms affecting the ERA when measurement noise is present

can, in principle, be omitted in the ERA/DC by properly choosing the integer 7.
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Figure 8.5: Average linear time-invariant models identification performances on 20 testing trajectories

Table 8.3: Average relative error for the 20 test trials

Value of parameter 7 | Error in approximation from ERA/DC
T=1 1.3-10°
T=2 9.8-1071
T= 8.1-107!
T=4 5.8-1071
r=5 2.5-1071
T=6 9.3-1072
T = 7.4-1072

As mentioned earlier, the main difficulty in linear system identification applications stems from the
interplay of noise and unmodeled dynamics and most systems are only linear to a first approximation.
Since this immediately limits the application of the results obtained by linear system identification
algorithms, the time-varying Eigensystem Realization Algorithm with data-correlation is applied to the
same data set. Figure 8.6 shows the performance of the TVERA /DC algorithm to reproduce the system

response in presence of noise, where the relative identification error is up to the noise level.
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Figure 8.6: Average linear time-varying models identification performances on 20 testing trajectories

8.3 Nuclear Norm Optimization

8.3.1 Introduction

The matrix rank minimization problem, or minimizing the rank of a matrix subject to convex constraints,
has recently attracted much interest. The rank minimization problem arises in a diverse set of fields,
where notions of order, complexity, or dimensionality are expressed by means of the rank of an appropriate
matrix. The nuclear norm (sum of singular values, also known as the Schatten 1-norm or trace norm) and
its variants have lately received a lot of consideration in convex heuristics in control, signal processing,
and statistics. Applications include system identification, low-order controller design, collaborative
filtering in machine learning, and Euclidean embedding problems [107]. Since rank minimization is
NP-hard in general, the nuclear norm of a matrix is often used as a relaxation for rank minimization
problems the same way ¢;-norm minimization techniques are used for cardinality minimization and
sparse signal estimation. In this paper, the problem of identifying a reduced-order linear time-invariant
(LTT) dynamical system from observations of its inputs and outputs (I/O data) only is considered. Many
algorithms have been established for identification purposes, some of them deterministic in nature, i.e.
without considering noise in the measured data, and others stochastic, i.e. with formulations minimizing
the noise uncertainty in the identification. During the 90s, building upon initial work by Gilbert and
Kalman, several methods have been developed to identify most observable and controllable subspace of
the system from given input-output (I/O) data. Under the interaction of structure and control disciplines,
the Eigensystem Realization Algorithm (ERA) was developed for modal parameter identification and

model reduction of dynamic systems using test data. The algorithm presents a unified framework for
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modal parameter identification based on the Markov parameters (i.e., pulse response) making it possible
to construct a Hankel matrix as the basis for the realization of a discrete-time state-space model. The
key step in this subspace identification method is a singular value decomposition (SVD) of the Hankel
matrix used to estimate the order of the system. Due to measurement noise, nonlinearity, and computer
round-off, the Hankel matrix will usually be of full rank which does not, in general, equal the true order
of the system under test. The reliance on the SVD for the low-rank approximation makes it difficult
to seamlessly apply the subspace methods to problems with important levels of noise. Minimizing
the nuclear norm of the Hankel matrix provides an interesting alternative as a heuristic for low-rank

approximation problems where a clear-cut criterion for model selection cannot be deduced from the
SVD.

From the classical SVD decomposition, some singular values of ¥ may be relatively small and
negligible in the sense that they contain more noise information than system information. Hence, the
approximation UOxOyOT g (truncation of nonzero small singular values) is to account for noise
in the data and for quantitatively partitioning the realized model into principal and perturbation (noise)
portions so that the noise portion can be disregarded. In other words, the directions determined by these
singular values have less significant degrees of controllability and observability relative to noise. The
reduced model of order n after deleting the singular values 0,1, ... is then considered as the robustly
controllable and observable part of the realized system. As an analyst, it should not be the aim to obtain
a system realization which exactly reproduces the noisy sequence of data: a realization which reproduced
a smoothed version of the sequence, and which closely represents the underlying linear dynamics of
the system, is more desirable. Some work has been conducted to provide a mathematical framework
for establishing the relationship between the singular values and the characteristics of the noise [14].
Besides the singular values, several other accuracy indicators have been developed for quantitatively
partitioning the realized model into principal and perturbational (noise) portions so that the noise

portion is disregarded.

8.3.2 Candidate Methods for Distinguishing True Modes from Noise Modes

In [1], two approaches to distinguish true modes from noise modes are considered. These include the
Modal Amplitude Coherence (MAC) and the Mode Singular Value (MSV).

Consider an identified discrete-time model in modal coordinates

LTmg4+1 = Amwmk + Bmuk (8483‘)
Y = émwmk + Duy, (8.48b)
where 4,, is a diagonal matrix containing the identified eigenvalues 5\1-71' =1,2,...,n of the system,

and B,, and C,, are the input and output matrices in modal coordinates, respectively. Let these two

138



matrices be partitioned as

by

) by| .

B,, = ,sz[al Gy oo &) (8.49)
b

Each Markov parameter can be written as a combination of n components contributed from different

modal coordinates:
hi = Co Al By = e:Mbi. (8.50)

Now, define the sequence

o= b Abe A2h o A% (8.51)
where [ is the length of the data. This sequence represents the time history reconstructed from the
identified eigenvalue, 5\1», and the row vector b; and is called the identified modal amplitude time history
for the i-th mode, because it represents the temporal contribution of the i-th mode associated with
the output vector ¢; to the Markov parameters sequence. The output vector ¢; in modal coordinates
coordinates is nothing more than the i-th mode shape information at the sensor points.

Since Markov parameters are independent through similarity transformation, the Hankel matrix H ép )

is also
CmBm OmAmBm e CmAgn_le
) | CnAmBum  CoA% By o CrnAlB,
HP?Y = . . . (8.52)
CAP~'B, CnAP B, --- CnAP+i=2B_
_ O(p)R(q)’ (8.53)
with
Cm
- ChnA,,
oV =" (8.54)
Cpp AP
=@ 1
R” =B, AnBn - AL'B,|. (8.55)
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A, By, and Cy, represent the real system matrices in modal coordinates. R(Q) can also be partitioned

as
w6 by oo A0
7 _Bn Anbn X;l;lén_

A dot product of 7; and 7; results in the Modal Amplitude Coherence while analyzing the contribution

of each identified mode results in the Mode Singular Value.

8.3.2.1 Modal Amplitude Coherence (MAC)
The MAC developed can be thought of as a dot product between
1. 7;: the vector of the unit pulse response history asociated with a mode of the identified model, and

2. 7;: the vector of the unit pulse response history used in the identification:

Tyt
MAC,; = 7~| | —, (8.57)
VARG T
where i = 1,2,...,n and * means transpose and complex conjugate. If the two vectors coincide, then

the model reproduces the pulse response data.

8.3.2.2 Mode Singular Value (MSV)

The MSV is a method of characterizing the contribution of each identified mode to the identified model
pulse response history. The ERA attempts to identify a model to match the pulse response history: it
is thus reasonable that a mode that has a large contribution to the identified model’s pulse response
history has a large contribution to the system’s pulse response data and is then well identified by the
algorithm. Each modal coordinate contributes to the pulse response by the individual modal sequence,

which can be quantified by taking its maximum singular value:

MSV; = /Jl(1+ [+ 32] .+ [A2]) . (8.58)

8.3.2.3 Conclusion

MAC and MSV are the two methods traditionally used but usually tend to be very noisy and unreliable,
especially for high frequency mode. Nuclear norm minimization offers an alternative method for
computing low rank matrix approximations. Compared to other candidate methods for distinguishing
true modes from noise modes, the minimum nuclear norm approximation typically provides a more

clear-cut criterion for model selection than the SVD low-rank approximation.
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8.3.3 Matrix Rank Minimization

The rank minimization problem arises in a diverse set of fields, where notions of order, complexity,
or dimension are expressed by means of the rank of an appropriate matrix. The nuclear norm (sum
of singular values) of a matrix is often used as a relaxation for rank minimization problems the same
way ¢1-norm minimization techniques is used for cardinality minimization and sparse signal estimation.
The nuclear norm (also known as the Schatten 1-norm or trace norm) and its variants have lately
received a lot of interest in convex heuristics in control, signal processing, and statistics. Applications
include system identification, low-order controller design, collaborative filtering in machine learning, and

Euclidean embedding problems [107].

The matrix rank minimization problem consists of finding a matrix of minimum rank that satisfies a

given set of convex constraints

n}}n rank(X) (8.59a)

st. X €C (8.59b)

where X is the optimization variable and C' is a convex set of constraints. In this Chapter, a linear

system identification method utilizing nuclear norm minimization is presented.

8.3.4 Application to System Identification

Recall from the singular value decomposition from the Eigensystem Realization Algorithm:

=™ o | |[v™T
HP —ysyT = [U(n) U(o)} o o1 (8.60a)
0 by \4

—UumMsmMym™mT L pOn0)y 0T (8.60b)
N———
~0
~ UM Ry T (8.60c)

Some singular values of 3 may be relatively small and negligible in the sense that they contain more
noise information than system information. Hence, the approximation UOsOyOT g (truncation
of nonzero small singular values) is to account for noise in the data and for quantitatively partitioning
the realized model into principal and perturbation (noise) portions so that the noise portion can be
disregarded. In other words, the directions determined by these singular values have less significant
degrees of controllability and observability relative to noise. The reduced model of order n after deleting
the singular values 0,41, ... is then considered as the robustly controllable and observable part of the
realized system. Some work has been conducted to provide a mathematical framework for establishing
the relationship between the singular values and the characteristics of the noise [14]. Nuclear norm
minimization offers an alternative method for computing low rank matrix approximations. Compared to
other candidate methods for distinguishing true modes from noise modes, the minimum nuclear norm
approximation typically provides a more clear-cut criterion for model selection than the SVD low-rank

approximation.
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The formulation for minimizing the nuclear norm is

min (|, (5.61a)
s.t. HH(()”"’) - X‘ ‘F < ¢|SNR| (8.61b)

where SN R is the signal-to-nose ratio defined as

snp- Ely—E) (y-EY)]

- (8.62)

The measurement noise is a Gaussian white noise with zero mean and variance V. The principal SVD for
system order identification is performed on X. It is expected that the main benefit of the nuclear norm
approach is its ability to handle data sets with a high percentage of noise. Thus, numerical simulations

with relatively high signal-to-noise ratios will be conducted.

8.3.5 Numerical Examples

This section aims to demonstrate the validity of the proposed approach on two different numerical
simulations. The first example is an automobile system with a state of order n = 4. The second example,

more sensitive to noise, is a classical free three mass-spring-damper system or order n = 6.

8.3.5.1 Simulated Automobile System

Figure 8.7 shows an automobile simulated by a simplified two-degree-of-freedom system including a
rigid bar supported by two springs with spring constants k; and ks, and two dashpots with damping
coefficients ¢; and c¢p. The displacement x(t) and the rotation angle (¢) define the motions of the system.
Note that x(t) is the displacement of the center of mass. The force F'(¢) and the torque M (t) provide

the excitation sources of the system to the system for the purpose of the structural tests.

4
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Figure 8.7: A simulated automobile system
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The second-order differential equations for this system are

Mi + (i + K& = Bou (8.63a)
y=Czx (8.63b)
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where

M- m 0 7K _ k‘l + k‘g —(klll — kglg) ,C _ C1 + C2 —(Clll — Cglg) ’ (864)
0 T —(klll - kglg) kll% + le% —(Clll — Cglg) Cll% + Cgl%

with m and Z the mass and the moment of inertia of the vehicle and the partial constant-time input
influence matrix is By = I5. For the discrete-time system, the constant-time output influence matrix C'

is considered to be C' = I, (all states are measured) and the direct transmission matrix is zero.

In order to study the utility of nuclear norm optimization on the Hankel matrix, five different cases
are considered: one free-noise case where perfect input-output data are collected for the OKID/TVERA
procedure and four other cases with increasing amount of noise in the output data. In all cases, data
is recorded at a frequency of 5 Hz for 50 sec. The size of the Hankel matrix H (()p D g pm X gr with
m=4,r=2and p=q=29.

For the first case, as clearly indicated by the singular value decomposition plot Figure 8.8, it is
straightforward to see that the dimension of the system is n = 4. The clear cut after the four first
singular values is serving as a sign to identify the order of the system. Figure 8.9 displays the SVD for
different level of noise. For each plot, two SVD are shown: the original SVD with no optimization and

the SVD resulting from the Hankel matrix after nuclear norm optimization (labeled "Optimized SVD").
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Figure 8.8: Simulated automobile system: SVD with no noise

8.3.5.2 Free Three Mass-Spring-Dashpot System

Figure 8.10 shows a free three mass-spring-dashpot system where mq, ¢; and k; (i = 1,2, 3) are masses,
damping coefficients and spring constants, x;(t) are absolute displacements for respective masses and

F;(t) are input forces.
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Figure 8.9: Simulated automobile system: SVD for different levels of noise
The second-order differential equations for this system are
Mz + (x+ Kx = Bou (8.65a)
y=Cz (8.65b)
where
my 0 0 ki+ks —ki —k3 c1t+e  —a —c3
M=10 mo 0|,K= —kq ki1 + ko —ko (= —C1 c1+ Co —C2 , (866)
0 0 ms —]i)g —kg k‘2 + k‘g —C3 —C2 Cco +c3

The partial constant-time input influence matrix is By = I3 and, for the discrete-time system, the

constant-time output influence matrix C is considered to be C = I (again, all states are measured) and
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Figure 8.10: A free mass-spring-dashpot system

the direct transmission matrix is zero. Similarly to the Simulated Automobile System, five different
cases are considered, comprised of one free-noise case and four other cases with increasing amount of
noise in the output data. In all cases, data is recorded at a frequency of 5 Hz for 50 sec. The size of the
Hankel matrix Hép’q) is pm x qr with m =6,r =3 and p=q = 17.

Shown by Figure 8.11, the dimension of the system is n = 6. Figure 8.12 displays the SVD for different
level of noise. For each plot, two SVD are shown: the original SVD with no optimization and the SVD

resulting from the Hankel matrix after nuclear norm optimization (labeled "Optimized SVD").
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Figure 8.11: Three mass-spring-dashpot system: SVD with no noise
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Chapter 9
Conclusion

This dissertation develops a novel, unified and robust data-driven framework to address unsolved
problems in the area of nonlinear dynamical system identification and reduced-order modeling. The main
contribution of this dissertation is a common foundation to develop algorithms that combines the latest
techniques in time-varying subspace realization methods, sparse representation and embeddings. More
precisely, it offers a structure for data-driven linear time-invariant and time-varying system identification,
sparse system identification, data-driven uncertainty quantification, and bilinear system identification as
well as offering tools to mitigate noise in the data for engineering applications. This framework uses
state-of-the-art linear and nonlinear system identification techniques for state prediction but also for
reduced-order modeling of high-dimensional systems. This framework has further unique applications in

uncertainty quantification and sensitivity analysis.

9.1 Contributions

The first contribution of this dissertation is to structure the mathematical foundations around the system
identification problem. While the theory for the identification of linear systems is mature and well
understood, nonlinear system identification does not benefit from a common framework. Chapter 2
of outlined a universal frame that connects classical formulations with higher-order sensitivity tensors,
Carleman linearization and the Koopman operator theoretic framework. In essence, the majority of

nonlinear identification methods and algorithms rely on one of these.

Based on this common framework, the second contribution of this dissertation is the development of
a convex optimization-based approach for nonlinear system identification from state and control input
time histories. The proposed methodology in Chapter 3 expands the unknown nonlinearities in system
dynamics in terms of basis functions consisting of monomials of various orders, building an analogous
version of a continuous-time Koopman operator. The algorithm exploits recent advances in sparse
approximation to automatically select the appropriate structure for the inherent nonlinearities. The
excellent agreement in correctly identifying the true dynamics for different problems of various complexity
provides a strong basis for optimism in demonstrating the utility of the approach for identifying the

inherent physics-based map from given data.
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The third contribution of this dissertation is to extend and merge time-varying subspace system
identification methods with the identification of a time-varying Koopman operator of arbitrary order.
By linearization of the nonlinear flow about a nominal trajectory rather than a nominal point, Chapter
4 has presented an alternative to improve the validity region of the Koopman operator and curtail the
dimension of the lifting space in the case of time-invariant operators. The linearization about a nominal
trajectory leads to a linear time-varying (LTV) system and a time-varying Koopman operator (TVKO)
is developed as an alternate means to increase the prediction accuracy for a fixed dimension of the
lifted space. Numerical simulations have demonstrated the utility of this newly developed time-varying
Koopman operator in predicting the response of a nonlinear system. In complement, Chapter 5 has
exhibited the performance of this framework through and simulations of complex and high-dimensional
nonlinear systems, where traditional methods either fail or perform poorly. Time-varying reduced-order
models in conjunction with a higher-order time-varying Koopman representation of the dynamics allows
for far better prediction accuracy than traditional time-invariant subspace methods. Additionally, the
methods and algorithms introduced from Chapter 2 to Chapter 5 are in stark contrast with machine
learning a neural network-based methods. In this dissertation, the objective is to derive parsimonious
and tractable surrogates of dynamical systems in order to utilize them for optimization, state prediction,
uncertainty quantification, sensitivity analysis, control; the model creation is only the first step. The
inherent heavy structure of surrogates based on machine learning models make them difficult to be used
for any application other than pure prediction. Even though some work is being conducted to extract
physical quantities from MI-based models, physics-informed AI and machine learning is still an immense
field to be explored by the community.

The fourth contribution of this dissertation is to enhance and propose a unified framework for the
uncertainty quantification of nonlinear systems. Several direct and indirect methods are proposed to
accurately propagate the moments of an initial probability density function through nonlinear dynamics.
A combined time-varying reduced-order model with CUT quadrature is able to achieve minimal error
in moment propagation for a wide class of nonlinear systems. Once again, the framework proposed in

Chapter 6 unifies several techniques and serves as a reference for the field of uncertainty quantification.

The fifth contribution of this dissertation is to properly and accurately introduce the Koopman
operator for controlled systems. Chapter 7 clearly relates the identification of a Koopman operator for
controlled system to bilinear systems and defines for the first time the bilinear Observer /Kalman Identifi-
cation Algorithm (bilinear OKID). Moreover, it precisely pinpoints the difficulty associated with bilinear
system identification methods by exhibiting the growth in parameters in the I/O representation for
bilinear systems. Nevertheless, a continuous-time Koopman operator for controlled system is presented
with successful applications to nonlinear system identification. Additionally, it is shown that bilinear sys-

tem identification techniques offer a compelling framework in the sensitivity analysis of nonlinear systems.

The sixth contribution of this dissertation is to introduce a few approaches to deal with imperfect
data. Noise, finite length of data, parameters variation, unmodeled dynamics are some of the issues that
limit the application of classical identification algorithms. Following Chapter 8 introduces an approach
with data-correlation to the time-varying eigensystem realization algorithm and demonstrate the efficacy

of the new algorithm to temper the effect of noise. By properly tuning some of the parameters, the bias
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terms affecting the TVERA when measurement noise is present can be omitted in the TVERA/DC,
leading to better prediction accuracy. Additionally, due to measurement noise, the Hankel matrix will
usually be of full rank which does not, in general, equal the true order of the system and the reliance on
the SVD for the low-rank approximation makes it difficult to effectively with important levels of noise.
Chapter 8 proposes a method to minimize the nuclear norm of the Hankel matrix as a way to offer an
alternative for low-rank approximation problems where a clear-cut criterion for model selection cannot
be deduced from the SVD. Numerical examples of different dimension with various levels of noise prove
the efficacy of the proposed heuristic approach.

9.2 Future Work

The contributions developed in this dissertation extend the envelope of modern data-driven system
identification; however, several notable avenues exist for further enhancing the developed framework.
With the aspiration to build a computationally fast, robust and accurate data-driven framework to execute

and operate real-time and on-board, we highlight several research directions for future consideration:

1. The first research direction would be to obtain a better understanding of data acquisition, specifically
for system identification oriented applications. This involves what type of input signal to be used,
how to condition and measure the signal, and how to acquire the output data. How to collect
the data (from potentially different sources), fuse them, extract relevant features, pre-process and
de-noise them involve several decisions that are crucial for a system identification framework that

relies on collected data.

2. The second direction would be to properly establish an estimation framework based on observability
conditions and connected to the Kalman framework. Preliminary results show that the observer gain
in OKID or TVOKID is the Kalman gain when the observer order tends to infinity. Observability
and state estimation is also a crucial component of the Koopman framework when one wants to

extract the original physical state from a higher-dimensional lifting space.

3. Another research direction would be to extend bilinear system identification techniques using
the TVERA framework. At present, exact bilinear system identification algorithms suffer from
the growth of parameters and make use of specialized inputs to counter this effect. Alternate

formulations using TVERA could have the potential to alleviate this issue.

4. Time-varying system identification algorithms provide a set of system matrices that are explicitly
function of time whereas they are in fact a function of the nominal state. Initial work building
libraries of system matrices over time and assigning each of them with the corresponding estimated
state exhibits a lot of interest and is one solution to extend the validity of the system matrices

beyond the last time-step.

5. In the same spirit, time-varying identification techniques can be used for cases where some
parameter of the system is time-varying. This would lead to some sort of tensor decomposition in

lieu of a classic matrix SVD decomposition.

6. The simultaneous identification of an observer and controller has been performed for time-invariant

linear systems with full-state feedback. This can be extended to time-varying observer/controller
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and potentially to other types of controller (other than full-state feedback).

. A Q-Markov cover is a state-space realization that not only matches the Markov parameters of a
linear system but also its covariance parameters. A time-varying version of a Q-Markov algorithm
would allow one to have access to all possible equivalent time-varying realizations of a linear

time-varying system.
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Appendix A
Laplace Filtering Operation for
Systems of Arbitrary Order

A.1 Introduction

The developments presented in this Appendix aim to extend even further the mathematical development
developed in Chapter and show how to identify the dynamics of a general d*"-order physical system
where only position measurements are accessible and the governing dynamics rely only upon position

knowledge. For d € N, this system is represented as a general d*"-order nonlinear dynamical system
2@ (1) = f(a(t) + Gu(t), (A1)

where x(t) € R™ represents the state of the system and w(t) € R™ the control action at time ¢ and
G € R™ " is the constant-time input influence matrix. The nonlinear function f : R™ — R™ represents
the dynamics constraints that define the equations of motion of the system and is unknown. Some
important results useful for further developments will be presented first. In the following, A1, Ao, -+ are

real positive numbers.

A.2 Mathematical Preliminaries
For (i,7) € N2, let us define the function ¢ such that ¢(i,5) = 1 if i =0 or j = 0 and
¢(i,5) = (1) > A N otherwise. (A.2)
k=1 (1,02, k) €[L,i]

nyy +niy+-Ang, =j
h<lo<--<lg

For (i,j) € N2, it can be shown that the number of terms in the series ¢(i,7) is 1 if 4 or j is 0 and

kz: (;) (i_ D otherwise. (A.3)
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Similarly, one have the following relationship for (i,;) € N?
P, j) — Nip19(i + 1,5 — 1) = (i + 1, 4). (A.4)

For any d € N* and = € R, it is possible to write

d d—1
% = ag H(x+)\m)+a1 H(x+)\m)+~~+ad_1(x+)\1)+ad

m=1 m=1

d—1 d—i (A.5)
[az H s+ )| +ag
1=0 m=1
The coefficients are

a; = ¢(d—1i+1,4). (A.6)

This last assumption is a central result and can be proved by induction.

For d = 1, one have ' = ag(z — A1) + a1 and can obtain ag = 1 and a; = —\; by matching degree.
Also, by definition of the function ¢, ¢(0,1) =1 =ag and ¢(1,1) = =X\ = a;.

Suppose that the assumption holds true up to a certain integer d > 1. There exists coefficients
bo, b1, - ,bgy1 such that

d+1 d

=ty [[@+Am)+b1 J] @+ Am) + -+ bal@+ A1) + basa. (A7)
m=1 m=1
On the other hand,
zt = 2y
d d—1
[ H )+ a1 H(:17+)\m)+~'+ad_1(x+)\1)+ad x
m=1 m=1
d d—1
= qox H (x+ M) + a1z H(m+)\m)+--~+ad,1x(9c+)\1)+ad:c
m=1

d+1 d (A.8)
= qy H(x+)\m)+a1 H(x+>\m)+~~+ad_1(x+>\1)(x+)\2)+ad(:r+)\1)

m=1

d
- laoAdH [ @+ 2m) +aha H(m+)\m)+---+ad_1)\2(x+)\1)+ad)\1

m=1

= ag H (x+ Am) + (a1 — apAas1) H (z+ A 4+ (ag — ag—122) (x + A1) — ags.
m=1

It is clear that by = ag = 1 = ¢(n+2,0) and byy1 = —agh = —(—=1)¥AE- N = (=)W = ¢(1,d+1).

For the other coeflicients,

bi = a; — ai_1>\d+2_i = ¢(d — 1+ 1,1) - ¢(d —1 + 1 + 1,1 - 1)>\d+2—i = ¢(d + 2— Z,Z) (Ag)
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This finishes the proof.

A.3 Laplace Filtering Operation

Before proceeding, consider a set of basis functions {¢;},_; ., ¢ : R — R, so that one can approximate

f as a linear combination of finite number of IV basis functions such that V & € R”, the following is true

o0
flx) = Zaifm(fl?), (A.10)
i=1
where {o;},_; ., € R", is a set of unknown coefficients. In practice, a specific integer N is selected

such that the IV first basis functions will provide an acceptable approximation of the actual function f:

N
fl) = aigi(x) = ad(x), (A.11)
i=1
or equivalently
f(z) = ag(x), (A.12)
T T
where o = [041 Qs - OKN} € RV*" and ¢(z) = [(bl(w) do(m) - on(x)| €RN*L Hence
Eq. (A.1) can be rewritten as
N
2D (t) = Z a;di(x) + Gul(t). (A.13)
i=1

From now on, consider a one-dimensional system, that is n = 1 and « = z is a scalar variable. If n > 1,
it is sufficient to work along the dimension of x and repeat the steps along each dimension. The Laplace
transform of the left-hand side of Eq. (A.13) is

c{a )} = 51X (s) = > st FaD 0). (A.14)
k=1

For A\; € R7, let us consider the Laplace filtering operator

Iy,: R —= R,
. (A.15)

s+ N

L] —
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Applying successively Zy,,Zx,, -+ ,Zx, to Eq. (A.14) gives

XU(s) = T, 0T, 0+ o Ty, [£{a@()}] = . = X9(s) — X3(s),

where

d
Xd(s) = dsA and  X&(s) = = (A.17)
(s4 Am) H s+ Am
m=1 m=1
Using previous developments, it is possible to write X (s) as
54X (s d —14+ 1,4
X{(s) = — X ) + Z A=t L) vy A18)
(S+>\m =t H( +)\d—m)
m=1 m=0
Similarly, the second term Xgi(s) is
d
Z 1k (k=1) ()
Xg(s) = =1
H (s4+ Am)
m=1
d—1 fd—k—1 d—k—i
( p(d—k—i+1,4) (s+>\m)+¢(1,dk)> 2= (0)
; (d—1)
_ k=1 1=0 m=1 + X (O)
B d d
m=1 m=1
d—1d—1 d
pd—j+1j—k) @ p(L,d—Fk) 4y
_ZZ Jj—1 z (O)+Z d—1 (O)
T G ) S | (CRP VR
m=0 m=0
_ sz: pd—j+1,j—k) (k=1) (0)
J—1
== H (5 + )\d—m)
m=0
(A.19)
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Finally, the compact expression for X is

L Od=j+1,)X(s) =Y d(d—j+1,5—k)a*1(0)
X¥(s) = X(s) + Z j—1k:1 . (A.20)
=1

H (5 + )\dfm>

This expression of X% is easily expressed in the time-domain. Performing the same operations on the
right-hand side of Eq. (A.13) leads to

(I)flf(s) :I)\dOI)\d71 O"'OI)Q [E{('ZSZ(IE)}] = d CI)l(S) ) 1= 1727"'7N7 (A21)
(s4+ Am
m=1
and
UM (s) =Tn,0Tn, , 0+ oIy, [C{u(t)}] = — Ul , (A.22)
(s 4+ A\
m=1

where L{¢;(x(t))} = ®;(s) and L{u(t)} = U(s). Finally, the Laplace filtered version of Eq. (A.13) is
X¥(s Zaz@df + GU¥(s). (A.23)

with X &% and U defined in Eq. (A.20), Eq. (A.21) and Eq. (A.22). Going back in the time domain,
one can write the corresponding differential equations for ®# and U# immediately. For ®% first rewrite
Eq. (A.21) as

d
P;i(s)
of(s) = — & &f(s) [T (s + Am) = ®i(s)

I (s +Am) m=t

m=1 (A24)
d(bdf Zakskq)df 4 P, ( )
with
k
Am—k — Z H )\lj' (A25)
1I<hi<le<-<lp<m j=1

Considering zero initial conditions, (bglf(k) (0) =0 for k=0,1,...,d, one obtains the differential equation
pdt Za oW + di(z), i=1,2,....N. (A.26)

155



The same procedure for the input signal leads to the differential equation
(d) S
u () = = apu™ (1) + ult), (A.27)
k=0

with similar zero initial conditions. Notice that Eq. (A.20), Eq. (A.26) and Eq. (A.27) lead to Eq. (3.11),
Eq. (3.14) and Eq. (3.15) for d =1 and Eq. (3.30), Eq. (3.34) and Eq. (3.35) for d = 2.
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Appendix B
Controllability and Observabil-
ity of linear systems

Before solving for the Markov parameters, it is of great importance to know whether all the states of
a system can be controlled and/or observed since a solvable system of linear algebraic equations has
a solution if and only if the rank of the system matrix is full. While controllability is concerned with
whether one can design control input to steer the state to arbitrarily values, observability is concerned
with whether without knowing the initial state, one can determine the state of a system given the input

and the output.

B.1 Controllability in the Discrete-Time Domain

A state x(q) is said to be controllable or state-controllable if this state can be reached from any initial
state of the system in a finite time interval by some control action. If all states are controllable, the
system is called completely controllable or simply controllable. Given A, B and x(0), the idea is to find
the sufficient and necessary condition to determine how to reach x(q) without ambiguity. It is clear that
since A and x(0) are given, it is therefore equivalent to determine x(q) or (q) = x(q) — A%x(0): to
determine complete controllability, it is sufficient and necessary to determine whether the zero state

(instead of all initial states) can be transferred to all final states.

The solution to the discrete representation at time ¢ = ¢At where At is the sampling period is

z(q) = A%z(0)+ Y _ A" 'Bu(q—1i) (B.1)
=1

157



or in a compact matrix form

u(g —1)
u(q —2)
z(q) = A%z (0) + [B AB A?B .-+ A"'B| |u(g-3)] - (B.2)
| u(0) |
The expression of &(q) can be written as
#(¢) = R9% (B.3)
where
RY=|p AB A?B ... Aq—lB} : (B.4)
and
u(g —1)
u(q —2)
@=|ulg—3) (B.5)
| u(0) |

R is called the controllability matrix. Reaching x(¢q) without ambiguity is thus equivalent to find a
solution of Eq. (B.3) for w. Therefore, the discrete time-invariant linear system, Eq. (8.1), of order n is

controllable if and only if the n x gr block controllability matrix R? has rank n (assuming gr > n).

B.2 Observability in the Discrete-Time Domain

A state x(p) is observable if the knowledge of the input w(k) and output y(k) over a finite time interval
0 <k < p—1 completely determines the state x(p):

z(p) = A’z (0) + Y A" Bu(p —i). (B.6)
i=1

With knowledge of the system matrices A and B and the control input w(k), 0 < k < p—1, it is

necessary and sufficient to see whether the initial state (0) can be completely determined from the
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output sequence y(k), 0 < k < p—1. In a compact matrix form, we can write

y(0) c
y(1) CA
7= y@ | = ca? |z0)=0"z(0), (B.7)

y(p—1) CAr-!

where a unique solution for x(0) exists if and only if O™ has rank n (full rank, assuming pm > n).
Thus, the discrete time-invariant linear system, Eq. (8.1), of order n is observable if and only if the

pm x n block observability matrix O"") has rank n, where

C
CA
oW =| caz |. (B.8)

CAP~1

These two notions of controllability and observability will be of central attention in the next section for

the development of the Eigensystem Realization Algorithm.

B.3 Coordinate Transformation

After having introduced the basic formulations of discrete-time invariant linear systems and before going
in depth in the narrative of the Eigensystem Realization Algorithm, some results concerning coordinate

transformation are introduced in this section.

In many problems, analysts need to use different coordinate systems in order to describe different
quantities. A well-chosen coordinate system allows position and direction in space to be represented in a
very convenient manner and allow sometimes to have some insights about the system itself. After all,
two independent observers might well choose coordinate systems with different origins, and different
orientations of the coordinate axes. The dynamic behavior of a mechanical system strongly depends upon
its mathematical representation. This is due to the fact that nonlinearity is not an inherent attribute of
a physical system, but rather dependent upon the mathematical description of the system’s behavior.
Ideally, one has an infinity of coordinate choices to represent the same physical system. In the study of
celestial mechanics, the quest to find a judicious coordinate system led to the development of various
canonical transformations. An extended discussion will be conducted in section concerning coordinate
systems and transformations. This section only presents a few important results for linear discrete-time

invariant systems.
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Let a new state vector be defined such that
x(k) =Txz(k), (B.9)
where T is a nonsingular square matrix. Substitution of Eq. (B.9) into Eq. (8.1) yields

z(k+1) =TAT'&(k) + TBu(k)

i (B.10)
y(k) = CT'z(k) + Du(k)

The effect of the input w(k) on the output y(k) is unchanged for the system. Thus the matrices
{TAT=',TB,CT~*,D} describe the same input-output relationship as the matrices {A, B,C, D}:

x(k+1) = Ax(k) + Bu(k) &(k+1) = Az (k) + Bu(k)
= ~ ~ (B.11)

y(k) = Cz(k) + Du(k) y(k) = Cz(k) + Du(k)

with

&(k) = Tz(k), (B.12a)
A=TAT™!, (B.12b)
B =TB, (B.12¢)
C=0171, (B.12d)
D=D (B.12e¢)

This transformation is called a similarity transformation. The fact that the input-output relationship
remains unchanged should also indicate that the pulse sequence, or Markov parameters, is invariant

through coordinate transformation. Indeed, for ¢ > 1,
hi=CA™'B=CT " (TAT"")' ' TB =CT'TA" 'T"'TB=CA"'B=h, (B.13)

As a result, there are an infinite number of state-space representations that produce the same input-
output description. Additionally, because matrices are similar if and only if they represent the same
linear operator with respect to (possibly) different bases, similar matrices share all properties of their

shared underlying operator (their rank in particular).
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Appendix C
Observer Kalman Filter Identi-
fication Algorithm (OKID)

Most techniques to identify the Markov parameters sequence Eq. (2.11) are based on the Fast Fourier
Transform (FFT) of the inputs and measured outputs to compute the Frequency Response Functions
(FRFs), and then use the Inverse Discrete Fourier Transform (IDFT) to compute the sampled pulse
response histories. The discrete nature of the FFT causes one to obtain pulse response rather than
impulse response, and a somewhat rich input is required to prevent numerical ill-conditioning. Indeed,
the FRF is a ratio between the output and input DFT transform coefficients which requires the input
signal to be rich in frequencies so that the corresponding quantity is invertible. However, considerable
information can be deduced simply by observing frequency response functions, justifying why FRFs
are still generated so often. Another approach is to solve directly in the time domain for the system
Markov parameters from the input and output data. In [15], a method has been developed to compute
the Markov parameters of a linear system in the time-domain. A drawback of this direct time-domain
method is the need to invert an input matrix which necessarily becomes particularly large for lightly
damped systems. Rather than identifying the system Markov parameters which may exhibit very slow
decay, one can use an asymptotically stable observer to form a stable discrete state-space model for the
system to be identified. The method is referred as the Observer/Kalman filter Identification algorithm
(OKID) and is a procedure where the state-space model and a corresponding observer are determined

simultaneously [15,19].

C.1 Classical Formulation

Considering a sequence of [ elements, assuming zero initial condition oy = 0:
-1
Y1 = Z CA™'Bui_1_i + Duy_y. (C.1)

i=1

In a matrix form, Eq. (C.1) is written as
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with

y= ['yo Yy, Ys yl,l} ; (C.3a)

Y=[p ¢B caB ... ca-2B|, (C.3b)
Uy U3} U U1
up Uy w2

U = Up u—3| - (C 30)
Uo

The matrix g is an m x [ output data matrix and the matrix Y, of dimension m x rl, contains all
the Markov parameters to be determined. As summarized in Table C.1, Eq. (E.2) is insolvable in the
multi-input multi-output case in general: the solution Y is not unique whereas it should be (Markov
parameters must be unique for a finite-dimensional linear system). The matrix Y can only be uniquely
determined from this set of equations for » = 1. However, even in this case, if the input has zero initial
value or is not rich enough in frequency content or if anything makes the matrix U ill-conditioned, the

matrix Y = gU ! cannot be accurately computed.

Table C.1: Equations vs. unknowns for Eq. (C.2)

# Equations | # Unknowns

m X [ m X rl

However, if A is asymptotically stable so that for some lg, CA*B ~ 0 for all time steps k > Iy, Eq. (E.2)

can be approximated by

y~YU, (C.4)
with

Y= [yo Y Yz - yl—l] ) (C.5a)
Y = [D CB CAB --- CAlO*lB} ; (C.5b)

Ug Ul U2 “e ulo “ee w1

Up Uy - Up-1 U2
U= Ug Upy—2 0 U3 |- (C.5¢)

i Uy e U1

Choose the data record length [ greater than r(lp + 1) and Eq. (C.4) indicates that there are more

equations than constraints, as summarized in Table C.2. It follows that the first [y + 1 Markov parameters
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approximately satisfy
Y =yU |, (C.6)
and the approximation error decreases as [y increases.

Table C.2: Equations vs. unknowns for Eq. (C.4)

# Equations | # Unknowns

m X1 m x r(lp+ 1)

Unfortunately, for lightly damped structures, the integer ly and thus the the data length [ required to
make the approximation in Eq. (C.4) valid becomes impractically large in the sense that the size of the
matrix U is too large to solve for its pseudo-inverse numerically. A solution to artificially increase the
damping of the system in order to allow a decent numerical solution is to add a feedback loop to make

the system as stable as desired.

C.2 State-Space Observer Model

In practice, the primary purpose of introducing an observer is an artifice to compress the data and
improve system identification results. A state estimator, also known as an observer, can be used to
provide an estimate of the system state from input and output measurements. Add and subtract the

term Gy, to the right-hand side of the state equation in Eq. (8.1a) to yield

LTp41 = Az + Buy, + Gyk — Gyk (C7a)
= (A+ GC)xy + (B + GD)uy, — Gy, (C.7b)
= Axy + Buy (C.7c¢)

where
A=A+GC, (C.8a)
B = [B +GD —G] : (C.8b)
u
Vi = * ) (C8C)
Yk

and G is an arbitrary matrix chosen to make the matrix A as stable as desired. The Markov parameters
of this observer system are referred as observer Markov parameters. The new input-output in matrix

form is therefore

y=YV (C.9)
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with

Y= [yo Y1 Y2 y[71:| ) (C.lO)

Y=|p ¢B cAB cA-2B|, (C.11)
Uy U3} U U1
vy i V2

V= Vo V-3 (C.12)
Vo

Table C.3: Equations vs. unknowns for Eq. (C.9)

# Equations

# Unknowns

m X [

m X

((r+m)(I—=1)+r)

Similarly as before, when C A* B ~ 0 for all time steps k > Iy for some Iy, Eq. (C.9) can be approximated

by
g=YV, (C.13)
with
Y= [yO Y Yo ylfl} ) (C.14)
Y=|p ¢B CAB ... cAv'B|, (C.15)
Upg U U2 U, U1
Vg V1 Vig—1 Vi-2
V= Vo Vig—-2 V-3 (C~16)
L Vo Vi—1p—1 ]
Table C.4: Equations vs. unknowns for Eq. (C.13)
# Equations # Unknowns
m x| mx ((r+m)lo+r)
The first Iy + 1 observer Markov parameters approximately satisfy
= _o T
Y =9V, (C.17)



and the approximation error decreases as [y increases. To solve for Y uniquely, all the rows of V must
be linearly independent. Furthermore, to minimize any numerical error due to the computation of the
pseudo-inverse, the rows of V should be chosen as independently as possible. As a result, the maximum
value of [ is the number that maximizes the quantity (r + m)ly +r < of independent rows of V. The
maximum [y means the upper bound of the order of the deadbeat observer. Furthermore, it is known
that the rank of a sufficiently large Hankel matrix H ' is the order of the controllable and observable
part of the system (the identified state matrix A represents only the controllable and observable part
of the system). The size of the Hankel matrix is pm x ¢r comprised of p + ¢ — 1 Markov parameters;
with p = ¢, this means 2p — 1 Markov parameters. If [y is the number of Markov parameters calculated
through OKID, it means that Iy = 2p — 1. Assuming gr > n, the maximum rank of H(()p’q) is thus mp.
If p is chosen such that mp > n, then a realized state matrix A with order n should exist. Therefore,
the number of Markov parameters computed, [y, must be chosen such that

lo+1
mpzn(:)mog >n, (C.18)

where m is the number of outputs and n is the order of the system. To conclude, the lower and upper
bounds on [y are
2n l—r

——1<1I <
m r+m

(C.19)

with [ being the length of the input signal considered.

The observer Markov parameters can then be used to compute the Markov parameters and the
matrices A, B, C' and D.

C.3 Computation of Markov Parameters from Observer Markov

Parameters

To recover the system Markov parameters from the observer Markov parameters, write

ho = D, (C.20a)
hy = CA* B (C.20Db)
~ [C(A+ GO 1(B+GD) —C(A+GO)*14) (C.20¢)
= [B,(j) —ﬁﬂ (C.20d)

Thus, the Markov parameter h; of the system is simply
hy =CB =C(B+GD)— (CQ)D =h{" =D = n{" — nPh,. (C.21)
Considering the product

hY = C(A+ GC)(B +GD) = CAB + CGCB + C(A+ GC)GD = hy + B”hy + h$Phy,  (C.22)
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the next Markov parameter is
hy = CAB = hS" — hPhy — h§P hy. (C.23)

Note that the sum of subscript(s) of each individual term both sides is identical. By induction, the
general relationship between the actual system Markov parameters and the observer Markov parameters

is
ho = }_Lo, (0243)

k
hy =AY — Z B hy_s, for k> 1. (C.24b)
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Appendix D
System Realization Theory for
Linear Time-Varying Systems

The methods developed in this appendix arise from a perspective of generalizing the classical Ho-Kalman
approach with OKID/ERA to the case of time-varying systems. It is shown that the generalization
thus made enables the identification of time varying plant models that are in arbitrary coordinate
systems at each time step. Furthermore, the coordinate systems at successive time steps are compatible
with one another and makes the model sequences realized, useful in state propagation. The first two
section review the basics of time-varying linear system identification while the third section discusses
the important notion of time-varying coordinate frames. The fourth section introduces the time-varying
version of ERA, TVERA, and the computational methods of generalized Markov parameters using the
input output map are subsequently discussed in the fifth section. Numerical examples demonstrating

the theoretical developments conclude the chapter.

D.1 Introduction on Linear Discrete-Time Time-Varying State-

Space Models
A linear discrete-time varying system is given by

Tpy1 = ArTp + Brug, (D.1a)
Y = Crxr + Druy, (le)

together with an initial state vector xo, where x; € R", u; € R" and y, € R™ are the state, control
input and output vectors respectively, k > 0. Similarly to the time invariant case, the time-varying (non
constant) matrices Ay, By, Cx and Dy with appropriate dimensions represent the internal operation of
the linear system, and are used to determine the system’s response to any input. The solution of the

difference equation, given in Eqgs. (D.1) in the time varying case, is now given by
k-1

xp = Py oxo + Z Qi1 Bius, (D.2a)
=0
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k-1
Y = CpProxo + Z Cr®r,it1Biu; + Dy, (D.2b)
i=0

where the state transition matrix is defined in terms of its components by

Ap_1Ap_o... Ako for k > ko,
Dpry =19 I for k = ko, (D.3)
undefined for k < kg.

This state transition matrix is associated with the homogeneous part of Eq. (D.2) (ux = 0, initial

condition response). By defining the generalized Markov parameters (or pulse response matrix) as

Cr®(k,i+1)B; fori<k-—1,
hii=1< CpBi_1 fori=4k—1, (D.4)
0 fori>k—1,
the input-output relationship in terms of this two index coefficients is written as
k—1
Y, = Cr®r oo + Z hiiu; + Dyug. (D.5)
i=0

For time-invariant systems, hy ; depends on k£ — 7 only.

D.2 Controllability and Observability

The two central notions of controllability and observability for linear time-varying systems do not evolve

from the time-invariant case. The two matrices are time-varying and defined as

Rff) = [IBk Ppt1,6Br-1 Prt1,k—1Br—2 - ‘I)k+1,k—q+23k—q+1} (D.6)
= [Bk ApBr—1 ApAx_1Brp_o --- Ak---Ak—q—i-QBk—q—i-l} .
and
CkI Ck
Cry1®Pri1k Cr14k
Oép) = Ck+2(1)k+2,k = Ck+2Ak+1Ak . (D'7)
| Cotp—1 Phtp—1,k | | Crtp—1Aktp—2 - Ak

At time k, a system of order n is controllable if and only if the n x gr block controllability matrix R](f)

has rank n. Similarly, a system of order n is observable if and only if the pm x n block observability

168



matrix O,(Cp ) has rank n. The reasoning behind these affirmation is the same as in the time-invariant

case.

D.3 Time-Varying Coordinate Systems and Transformations

Time-varying coordinate systems and their corresponding transformations is a fundamental notion
in understanding the identification process of linear time-varying systems. The transition operators
involved during the development play an important role in the qualitative and quantitative analysis of
linear time-varying ordinary difference equations. While previous sections already introduced similarity
transforms for linear time-invariant systems, coordinate transformations for linear time-varying systems
are much more challenging. This section purposely takes a step back to some basic definitions and
explains in more details the fundamentals of topological spaces and homeomorphisms in the context of

dynamical system theory.

Let’s consider two functions f and g that represent the dynamics of a continuous time-invariant
system in two different coordinate systems where f performs on the topological space E, g performs on

the topological space F"

Ve eFE, &= f(x,t) (D.8a)
VyeF, y=g(y,t) (D.8b)

Since f and g represent the same dynamics but in two different coordinate systems E and F', there

must exist a homeomorphism h between FE and F such that
Ve eE, hof(x)=goh(x), (D.9)
or equivalently,
VyeF, foh '(y)=htog(y). (D.10)

Figure D.1 below illustrates the relationship between the operators. For continuous linear dynamics,
replacing f and g by the operators A and A respectively, Eqs. Eq. (D.8a) and Eq. (D.8b) become

VexecE, ©=Ax (D.11a)
VyeF, y=Ay. (D.11b)

If the induced homeomorphism h is linear (hence replaced by the square invertible matrix T), it yields

the following relation
VeeE, TAx = ATz = A=T AT, (D.12)

with y = T'x. For linear discrete-time invariant systems, a linear topological transformation is also a
similarity transformation and this discussion completes what has already been presented in section.

Similar to the time invariant case, time-varying discrete-time systems are also invariant to coordinate
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—_—
h ho f(x) = goh(x) h
g
—
F F

Figure D.1: An homeomorphism h between two topological spaces E and F'.

(similarity) transformations; however, the isomorphic transformation between successive frames needs
particular attention. Compared to invariant systems with fixed frames F and F, time-varying systems
act on time-varying frames. As presented in Figure D.2, the two refrence frames F and F are now

time varying and the homeomorphism between two corresponding frames are also time-varying. The

v r

Ay Akt
Ey Ey —- B —- Ejia
To Ty ATy = Ti1 Ax l Tir Aet1Ths1 = ThpaAri l T2
fik Alﬁ»l
F Fy -_— Fr1 -_— Fiyo

Y

Figure D.2: Similarity transform between consecutive time-varying frames.

system representation {Ag, By, Ck, D} is said to be topologically equivalent to the representation
Ay, By, Cy, ﬁk} if there exists a sequence of invertible, square matrices (and not necessarily related to
each other) T} such that

/Ik = Tk+1AkT];1, (D.13a)
By, = Tht1 B, (D.13b)
Cr = Cy T, 1, (D.13c)
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Dy, = Dy, (D.13d)

The question, then, arises: how to calculate or estimate these sequence of matrices Tj?
First, the relationships for the controllability and observability matrices between topologically equivalent

representations are given by

=(a) - . = - - -
Rk = [Bk AkBk—l s Ak A Ak_q_l,_QBk_q_;’_l:I 5
= Tk;_l [Bk AkBk—l s Ak . Ak_q+2.Bk_q+1:| s (D14)
=T, 'R\",
and
ék Ck
Cri1A Cri1A
~ (p) k+143k k+141k
oY = . = . Tis1 = O Ty (D.15)
Crap-1Aiip2--Ak| | Crrp1Akip—2.- Ar

Inverting the corresponding controllability and observability matrices provide the transformation matrices

at proper time.

D.4 Time-Varying Eigensystem Realization Algorithm

D.4.1 Generalized Hankel Matrix

Similarly to the time-invariant case, Hankel matrices will play a major role during the identification
process. The classical Hankel matrix becomes a generalized Hankel matrix dependent of time, populated

using the generalized Markov parameters:

P k—1 P j—2 e P k—q
kg1 k—1 hivik—2 -+ hpy1ia—
o = | T i T _ o RW (D.16)
_hk+p71,k71 Pigp—1k—2 - hk+p71,k7q_

with the parameters p and ¢ chosen such that the generalized Hankel matrix retains the rank n, the
true state dimension. Indeed, if pm > n and ¢r > n, matrices Rliq) and O,(f ) are of rank maximum n.
If the system is controllable and observable, the block matrices R](Cq) and O,(f ) are of rank n and so is
H ip D), Again, identifying the number of dominant singular values of the Hankel matrix will provide an
indication about the unknown order of the reduced model to be identified. Differing ranks are possible
for this generalized time-varying Hankel matrix H ;p D at every time step for the variable state dimension
problem. However, it is assumed that the state dimension does not change with the time index and

it is not difficult to see that this assumption can be relaxed, given some adjustments. We retain the
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assumption owing to our focus on mechanical systems, in which the connection between physical degrees
of freedom and the number of state variables allows us to hold the dimensionality of the state space
fixed throughout the time interval of interest. Note that the definition of the generalized Hankel matrix
above is only valid for & > ¢. In practical experiments, inputs cannot be applied at negative time index
and generalized Markov parameters have no meaningful sense for negative indexes. In the next section,
we provide the detailed calculation of a discrete time-varying realization sequence based on the singular

value decomposition of H"'%.

D.4.2 Calculation of Discrete-Time Varying Realizations
As for the ERA in the time-invariant case, using the singular value decomposition of H ,(cp ’q), we can

write

=M o | v

HP —U, s, V] = {Um) U(O)} (D.17a)
k k 0 2:I(CO) V](CO)T
UV L uPs0vOT (D.17b)
—
~0
~UMsmy T (D.17c)

at a given time step k. In terms of the corresponding controllability and observability matrices,

(h.0) _ rmsmymT _ o) pl@ o —upzy
Hkp1q — Ukn Ekn an — Okp Rk(ll = @ (n)l/Q ()T (D18)
R,”, =3 Vi
The same procedure at time step k£ + 1 will lead to
1/2
O(P) — U(") E(")
; n) s(n) y,(n) T k+1 k15 k41
Hl(ciql) = U§c+)121(c+)1V5<:+)1 = O}(Czjle;q) = @ ) V2 ) T (D.19)
R” =% Vin
Considering the block shifted controllability matrix
RV = |\AuBiy AwAr B Apo Ap_gp1B (D.20a)
k kDr—1 kAgk—1Dk—2 -+ Ag...Ap_g41Dk—q :
— AR\, (D.20b)
and block shifted observability matrix
Cr1Ak
Cry2Ak 14k
ot = e = 0" Ay, (D.21)

Ck;erflAk;erfQ AR
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we get

A t t
Av=0}), 0" = RPRY, (D.22)

as an estimate for the identified time-varying discrete system transition matrix. Moreover, the first r

columns of R,(fq) form an estimate for the identified control influence matrix,

B, =R\"E,. (D.23)
Similarly, the first m rows of O](Cp ) give an estimate for the identified output influence matrix is

Cv = EILOY. (D.24)

D.4.3 Calculation of Discrete-Time Varying Realizations for the First Few Time
Steps

As explained before, the definition of the generalized Hankel matrix is only valid for k£ > ¢. The
methodology detailed in the previous section can only be employed once a full rank Hankel matrix can
be populated. This section presents a method for computing the first few time step models using an
additional set of experimental data, the free response experiments. The output data of N free response

experiments (also known as the zero input response) are given by

it oyl yi
ﬂép’N) _ yk#jl yk#fl yk#ﬁ _ Ogcp)X]iN)’ (D.25)
_yk#-&p—l yk#—ip—l yk#-i\;q_
where O,(ip ) is the observability matrix
i, ” -
Cri1As
in) = Crr2Ap41 Ak 5 (D.26)
| Chtp—14k4p—2. .. Ay
and X ,(CN) is a state variable ensemble at time k:
xN = [q)mw#l T S q>k7033§*N] € RN, (D.27)
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= (PN .
As for the procedure when k > ¢, using the singular value decomposition of H ,(Cp ), we can write

n n)T
o) }22) o ||V

H, W =U%VI=|u™n y? (D.28a)
CH o =] |vOT
UV L u0sOvoT (D.28b)
—
~0
~UMEmy T (D.28¢)

at a given time step k. In terms of the corresponding observability and state variable ensemble matrices

)

= (p.N) T o —ursm!
B =usvit o x (M= 0 T T D (D.29)
The same procedure at time step k£ 4+ 1 will lead to
(») (n) 5a(n) 1/2
o (0> N) n n n) T N Opir =Up 3
Hy., = U§c+)121(<+)1V§c+)1 = Ongl(w)l = N 1/2+ T (D.30)

N n n
X0 =m0, v,

Note that the state variable ensemble matrix X ,(g)l at time k + 1 is related to the state variable ensemble

matrix X ECN) at time k by

xV = a4, x™ (D.31)
which leads to the estimate
Ap=xx M (D.32)
for the time-varying state matrix at times k = 0,1,...,g — 1. The calculation of the corresponding Cy is
accomplished by setting
Cy = ELOW. (D.33)

Finally, the estimate for By, is calculated by forming the partial Hankel matrices for the first few time
steps (k=0,1,...,¢g—1):

hk+17k; Ck+lBk
hit2 k Cry2Ak41Bg
)1 ’
HPY) =" = . =0V By, (D.34)
ktpk | | CkrpArap—1 - Aky1 B |
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leading to

B =0%) "HY. (D.35)
However, the model matrices determined Eq. (D.32), Eq. (D.33) and Eq. (D.35) are of little use in
practice. This is because of the fact that the first few models developed in this manner (k < ¢) are in a
totally different coordinate system, derived from the free response singular value decomposition. Models
for k > ¢ are in the coordinate system derived from the forced response singular value decomposition.
Hence, one cannot use the models thus developed in state propagation because they have a jump
discontinuity at the time step k = ¢ in their coordinate systems. The first option to alleviate this issue
is to apply the coordinate transformation theory developed in the previous section. The second option is

to estimate the state at time k = g. This approach is explained in the next section.

D.4.4 Estimation of Initial Conditions from Identified Time-Varying Model

Writing the input and output from a general k** time step, for p more time steps, one obtain a set of

equations that can be written in a matrix form as

y=0"z, + A (D.36)
with
_ . ; _ u -
= Yr+1 7 0 — Uk+1 ’ (D.37)
| Yktp—1] | Yk+p-1 |
and
_ o, -
A, = Ck+.1Bk Dk.+1 | . (D.38)
| Crap-1Akrp2---Br Crip1Akip-2.- Bepr -+ Digp]

Eq. (D.36) can be solved using the least-squares solution:

2= 0" [y - Al (D.39)
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Appendix E
Time-Varying Observer Kalman
ldentification Algorithm

(TVOKID)

E.1 Introduction

In stark contrast to the time invariant (shift invariant) systems, the generalized Markov parameters
determine the pulse response characteristics of the true plant in a much more general fashion. Note
that the number of independent degrees of freedom to describe the input—output relationship increases
tremendously for the case of time-varying systems, as the response of the system (hy ;) not only depends
upon the time difference from the applied input (w(7)) but also on the time instant ¢ at which the said
input is applied. Therefore, a practical method is needed to calculate the generalized Markov parameters
without resorting to a high dimensional calculation. This calculation becomes further compounded in
systems in which the stability of the origin cannot be ascertained, because the number of potentially
significant generalized Markov parameters grows rapidly. In other words, in the case of the problems
with unstable origins, the output at every time step in the time-varying case depends on the linear
combinations of the pulse response functions and all the inputs applied until that instant. Therefore,
the number of unknowns increase by m x r for each time step in the model sequence and, consequently,

the analyst is required to perform more experiments if a refined discrete-time model is sought.

E.2 Classical Formulation

The input-output relationship in terms of thegeneralized Markov parameters is

k—1

Y = CrPr oo + Z hiiu; + Diug. (E.1)
i=0
In a matrix form, Eq. (E.1) is written as
Y, = Cu P ox(0) +Yu (E.2)
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with

Y:[Dk CiBr—1 CpAp_1Br_2 -+ CpAp_1...A1Bo|> (E.3a)
o
Uk—1
Uo

As was pointed out, such a relationship between the input and output leads to a problem that increases
by m x r parameters for every time step considered. Thus, it becomes difficult to compute the increasing
number of unknown parameters. In the special case of systems for which the open loop is asymptotically
stable, this is not a problem. However, frequently, one tries to use identification in problems that do not
have a stable origin for control and estimation purposes and may be required to compute time-varying
model sequences with higher resolution. Again, rather than identifying the generalized system Markov
parameters, one can use an asymptotically stable observer to remedy this problem of unbounded growth
in the number of experiments. In addition, the algorithm presented in this section gives an estimate on
the minimum number of experiments needed to perform identification and/or recovery of all the Markov
parameters of interest until the specific time instant considered: a central result is to make the number

of repeated experiments independent of the desired resolution of the model.

E.3 State-Space Observer Model

Following the work from time-invariant systems, consider the use of a time-varying output—feedback-style

gain sequence in the difference model Eq. (D.1a), producing

Try1 = AT + Brug + Gryy, — Gryy (E.4a)
= (Ak -+ chk) Tr + (Bk + Gka) Uy — kak (E4b)
= Akazk + Bkvk (E4C)

where
Ak = A, + GrCy, (E.5a)
Bk: = [Bk + G D —Gi| (E'5b)
u
’Uk, = k y (EBC)
Yi
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and G}, is an arbitrary matrix chosen to make the matrix A, as stable as desired. The general 1/O

relationship is

k
Y = CkAk—l ... Aowo + Z Bk,k—ivk—i + Dpuy. (EG)

i=1

and the generalized Markov parameters of this observer system are referred as generalized observer
Markov parameters, constituted of two block components similar to the linear time-invariant case, shown

in the partitions to be

hk:,i == Cchk—l ‘e Ai+1Bi (E7a)
= [CkAk,1 ce Ai+1 (Bl + GlDl) —CkAk,1 . Ai+1Gi (E7b)
= [ a2 (E.7c)

The closed loop, thus constructed, is now forced to have an asymptotically stable origin. The first
step involved in achieving this goal of closed-loop asymptotic stability is to choose a number of time
steps I (variable each time, in general) sufficiently large, so that the output of the plant at time k + I,
strictly depends only on the I 4+ 1 previously augmented control inputs {vg4i—1}i=1..1, and wg4;, and

independent of the state at every time k. Therefore, one can write

173
Yrrt, = ChrtnAkti—1 - ArTi + Z Ptty, ktim1Vkti—1 + Dyt Wity (E.8a)
i—1
Ui
~ > " Rty hetio1Vkgi-1 + Dig Wi, (E.8b)
i=1
where
Ck+lk14k+lk—1 LAz~ 0, (E.9)

with exact equality in the absence of measurement noise. Note that the order [ of the model can
change with time. In using this I/O relationship instead of the exact relationship given in Eq. Eq. (E.1),
damping is introduced into the closed loop. For simplicity and ease in implementation and understanding,
the variable order [; remains fixed and minimum (time-varying deadbeat) at each time step and set to

lmin, Where [y is the smallest positive integer such that [, > mn.

The output at time k (k > li,in) is written as
Yy, = Y0y, (E.10)
where

Yk:[Dk Pig—1 hieg—2 - Bk,kflmm} (E.11a)
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U

(]
(E.11b)

Ql
>
I

V-2

V-1

min

This represents a set of m equations for m x ((r +m)lmin + ) unknowns. In this case, the number of
unknowns remains constant which makes the number of repeated experiments required to compute these

parameters now constant: it is observed that a minimum of
Nmin = (T + m)lmin +r (E12)

experiments are necessary to determine the observer Markov parameters uniquely. From the developments
of the subsequent sections, this is the minimum number of repeated experiments one should perform
in order to realize the time-varying system models desired from the TVERA. Eq. Eq. (E.10), with NV

repeated experiments yields:

Y. =Y.V, (E.13)
where

Ye= U Y1 Y2 - yz—J’ (E.14a)
Y = | Dk Phg-1 hrp—2 - Bk,k—lmm} , (E.14b)

R L L

#1 #2 #N

V-1 V-1 7 Uk
Vi= vk’&?&_l2 vk#_QQ ’Uf:_]\g . (E.14¢)

#1 #2 #N
[ Vk—tmin Yh—lmin " Vk—loin |

Therefore, the least-squares solution for the generalized observer Markov parameters is given for each

time step as

Y, =9,V (E.15)

E.4 Computation of Markov Parameters from Generalized Markov
Parameters

Considering the definition of the generalized observer Markov parameters, one can write
i g1 = CrBir_1 (E.16a)
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= Cy {qu + Gr-1Dg—1 _Gk—l} (E.16b)
_ [za (2
- {hl(c,l)cq _hl(c,l)cq : (E.16¢)

where the superscripts are used to. The following manipulation relates the generalized Markov parameter

hi,k—1 to the components of the generalized observer Markov parameter ﬁk’k,lz
hig-1 = CiBr_1=h{)_, — hi’L_ Di_1. (E.17)

A similar expression for Markov parameters with two time-steps between them yields

hi'h_y — hih_3Di—s = CuAy_1 Bz — CuAp_1G_2 Dy (E.18a)
= CrAp_1 (Br—2 + Gr_2Dp_2) — Cr Aj_1G_2Dj_> (E.18b)
= CrAp_1Bj_o (E.18¢)
= Ct (Apet + Gro1Chot) Bros (E.18d)
= CpAp—1Br—2 + hy_ Cro1Bj_s (E.18¢)
= hie—s + By P 1 k2. (E.18f)

This manipulation leads to an expression for the generalized system Markov parameter hy 2 to be
calculated from generalized observer Markov parameters at time step k£ and the generalized system
Markov parameters at previous time steps. This recursive relationship holds in general and enables
the calculation of the generalized system Markov parameters from the generalized observer Markov

parameters. Figure E.1 displays an overview of the TVOKID algorithm.
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1. Form an Observer

x(k+1) = Ayz(k) + Bru(k) + Gry(k) — Gry(k)
= (Ax + GxCr) (k) + (B + Gi.Di.) u(k) — Gry(k)
— (k) + Bro(k)

v

Keep the size of the
problem constant thanks
to the observer!

Need repeated experiments:
each time step creates k more
Generalized Markov Parameters

2. Observer Markov parameters appear linearly

y(k) = [y(k) y(1) y(2) y(l—1)],
i‘}k _ [Dk Prb1 Pupo P bt ] Minimum number of experiments:
u(k)*! u(k)#? u(k)*N
v(k —1)#1 v(k —1)#2 v(k — 1)#N Niin = (7 4 m)lmin +7
V5= v(k — 2)#! v(k —2)#? v(k —2)#N
’U(k — lmi")#l ’U(k — lmin)#2 ’U(k) — lmin)#N
¥ Markov Parameters from Observer
3. Solve for a least-squares solution Markov Parameters
v, — oV o o
I Y =gk)V, /1‘/‘.]}1 o= hy j 9Dg—2 = hgp_o+ /J‘/,__/, 1
# Equations # Unknowns

m X 1 m X [(r+m)lo + 7]

Figure E.1: Overview of the TVOKID algorithm
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