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Air-breathing hypersonic vehicles is a class of vehicles that operates at high Mach number in
the atmosphere for the entire mission profile and are exposed to an extreme aerothermodynamic
environment involving stochastic loads. Due to current limited capability of ground tests and
the lack of available flight test data, there is a significant degree of uncertainty associated
with the aerothermoelastic modeling of hypersonic vehicles and limited ability to alleviate this
uncertainty through experimental testing. This work aims to provide a unified and automatic
framework to discover governing equations underlying an unknown dynamical system from
data measurements. In an appropriate basis, and based on the assumption that the structure
of the dynamical model is governed by only a few important terms, the equations are sparse
in nature and the resulting model is parsimonious. Solving a well-posed constrained one-
norm optimization problem, we obtain a satisfactory zero-norm approximation solution and
determine the most prevalent terms in the dynamic governing equations required to accurately
represent the collected data.

I. Introduction

The past decade has witnessed a strong interest in airbreathing hypersonic vehicles for low-cost space exploration as
well as rapid response to global military threats [1}2]]. During atmospheric flight, the hypersonic vehicles are exposed to
extreme and complex aerothermodynamic environments that involve aerodynamic loading and heating combined with
stochastic acoustical loads, viz. aero-thermal-acoustical (ATA) loads. In particular, the large deflections of a control
surface can lead to flow separation and subsequently shock wave—boundary-layer interactions (SWBLI), resulting in
strong and highly unsteady ATA loads on the vehicle structure [3,4]]. The ATA loads lead to degradation of material
properties, accumulation of thermal stress, and fatigue in structure that may eventually impact structural integrity and
cause aerothermoelastic instabilities. Therefore, the characterization of the interaction between the ATA loads and the
structural response is critical for analyzing performance, stability, and reliability of hypersonic vehicles.

A problem representative of the interaction between the ATA loads and the structure is the panel flutter analysis.
Panel flutter is a classical aeroelastic problem and has been studied extensively since late 1950s, as shown in some
comprehensive reviews [5,16]. Furthermore, the inclusion of thermal effects in panel flutter analysis has led to a large
body of research in aerothermoelastic analysis [} [7]. However, while it has been shown that the acoustical loads due to
turbulent boundary layer can significantly alter the aerothermoelastic stability boundary of a hypersonic skin panel
structure [8]], the combined impact of the aerothermal and the acoustical loads on the thermoelastic response has not
been studied in depth.

One of the major challenges associated with aerothermoelastic analysis of skin panels involving stochastic loads
is the computational cost required for time-resolved analysis. On one hand, due to the high-frequency turbulent flow
components, a small time step size on the order of 10~>ms is required to resolve the stochastic structural excitation. On
the other hand, high-fidelity finite-element-based structural model is required to capture the nonlinearity that is critical
to the aerothermoelastic stability and material response. The combined requirement of the nonlinear modeling and high
time resolution leads an intractable computational burden. To tackle this computational challenge, we propose to develop
a novel sparse nonlinear system identification technique to generate a reduced-order model (ROM) for the structural
model. This new ROM will enable computationally efficient stochastic aerothermoelastic analysis and will pave the way
for parametric study and design of robust hypersonic structures in the presence of stochastic aero-thermal-acoustical
loads.
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Historically, system identification for nonlinear dynamical systems has been developed while focusing on specific
classes of system and can be broadly categorized into basic approaches such as Volterra series models, block-structured
models, NARMAX models, state-space models and neural network models. Rapidly, methods to learn compact
representations of signals were developed and have been widely studied in many forms such as factor analysis, and
promising performances have been reached in numerous signal processing tasks such as image denoising [9H13]], super
resolution [14H16], inpainting [[17, [18]] and compression [[19,20]. Recent advances in machine learning, data science
and data modeling have promised the hope of extracting relevant features of dynamical systems and repetitive patterns
in vast multimodal data that are beyond the ability of the analyst. However, despite the abundance of experimental data
and the development of new technologies, the ability of these algorithms to extrapolate a general physical model and
find governing equations from data has been very limited, especially beyond the scope of the domain where they were
sampled and constructed. Using symbolic regression, Bongard and Lipson proposed a new approach to determine the
underlying structure of a nonlinear dynamical system from data. Techniques that address aspects of the dynamical
system discovery problem include the analysis of time-series data [21]], methods based on equation-free modeling [22],
empirical dynamic modeling [23} [24]], modeling emergent behavior [25]], and automated inference of dynamics [27H29].
More recently, the dynamical system discovery problem from the perspective of sparse regression and compressed
sensing has been addressed by leveraging the fact that most physical systems have only a few relevant terms that define
the dynamics, making the governing equations sparse in a high-dimensional nonlinear function space [30]. We aim to
build our work upon this last assumption. Sparse regression is employed to determine the most prevalent terms in the
dynamic governing equations required to accurately represent the collected data. In the details, we build a dictionary
consisting of a complete set of basis functions whose time-series are represented as columns of a matrix. Solving a
well-posed constrained ¢; optimization problem provides the most prevalent basis functions that explain the data in the
sense of minimizing the 2—norm of the residuals. After introducing the methodology of sparse representation and how
sparse minimization is applied to a general dynamical model, the developed algorithm is applied to a simulated system
modeling a heated panel under aerothermoelastic loads.

I1. General Methodology

A. Introduction on Sparse Representation

This work aims to present an extended, unified and automatic framework to discover governing equations for
aerothermoelastic analysis simply from data measurements, based on the assumption that the structure of the dynamical
model is governed by only a few important terms. Considering a general dynamical model with affine control input

x(1) = f(x(1) + Gu(t), (1)

where x(tr) € R" represents the state of the system and u(¢) € R” the control action at time t and G € R™ is the
constant-time input influence matrix. The unknown nonlinear function f : R” — R” represents the dynamics constraints
for the system. The goal here is to find to structure of the unknown function f given the time history of x(¢) and u(¢)
and constant control influence matrix, G. Considering a set of basis functions {¢;};—; . ¢: : R* — R, f can be
approximated as a linear combination of these basis function such that V x € R",

f@) =) aigix), @)

i=1

where {@;};,-; . @; € R", is a set of unknown coefficients. There are infinitely many choices for basis functions
such as polynomials, trigonometric functions, radial basis functions, etc. A central difficulty in learning f lies in
choosing appropriate basis functions and the choice of basis functions unfortunately depends on the characteristics
of an unknown input-output map. In an appropriate basis, the equations are often sparse in nature and the resulting
model is parsimonious, i..e, a very few of a; are non-zero. It is desired to choose the basis functions which allow to
represent f with as few terms in (2)) as possible. In this respect, the summation in (2) is taken over finite number of N
basis functions:

N
f@) =) aigilx), 3)
i=1



or equivalently
fx) = a" p(x), “)

where @ = [al @y - aN]T € RV and ¢(x) = [¢51(x) d(x) - ¢N(x)]T € RN, Our objective is to
search some handbook of known functions for a set that best represents the given data. Recent advances in compressed
sensing and sparse regression [26] can be exploited to learn these few non-zero terms from an over-complete dictionary
of basis functions without performing a combinatorially intractable brute-force search. There is no doubt that the choice
of basis function significantly effect the approximation accuracy and complexity of the model. For many known physical
systems, the nonlinearities can be represented by only a few term with a judicious choice of basis functions. In this
respect, many efforts have focused on the adapting the architecture of the network by selecting appropriate models
from a pre-defined dictionary of models [27H29]. However, this leads to an exhaustive search algorithm to learn the
appropriate basis functions to represent the network dynamics. More recently, advances in compressed sensing and
sparse regression has been exploited to learn appropriate basis functions from an over-complete dictionary of basis
functions without performing an exhaustive search [30l31]. To determine the form of the dynamics from data, the
authors in these papers collect a time-history of the state and its derivative sampled at a number of instances in time. In
the case where the derivative is not part of the measurement model, they construct state derivative information by finite
difference methods which make derivative calculations susceptible to noise in measurements. After carefully arranging
relevant basis functions in a dictionary, a linear least square problem can be posed to fund unknown coeflicients of the
basis functions. To enforce sparsity, an iterative least-squares problem is solved where the size of dictionary is reduced
by removing basis functions whose amplitude is lower than a prescribed threshold. Though this guarantees the balance
between model complexity and accuracy but the resulting algorithm is susceptible to noise in state measurement. As an
extension of this work, the main objective of this paper is to consider an integral form of the differential equation to
estimate unknown amplitudes of basis functions with only state and input measurements [32]. The secondary objective
of this work is to generalize this approach for identification of second and higher order systems with only position level
measurement data and system input data. Furthermore, the iterative least squares problem is replaced with an iterative
regularized ¢, optimization problem as used in our earlier work on sparse collocation methods for optimal feedback
control laws [33]]. This guarantees that the sparse solution is found with high probability using convex optimization
methods.

The next Section provides the mathematical details corresponding to finding a sparse solution for a/s.

B. Mathematical Development

As stated in the previous Section, the objective is to find a sparse solution for «/s given the time histories of x(¢)
and u(z). If time history of %(7) is known, then one can solve for the unknown coefficients, a;s through a least squares
solution. In Refs. [30], an iterative least squares problem is solved to find the best set of basis functions to represent
[ accurately. If time derivative of x(¢) is not available, then one needs to reconstruct this information through time
history knowledge of x(¢) via finite difference. Such an approach is sensitive to noise in measurements of x(¢) [30]. In
this section, a formulation is presented to find unknown /s without any knowledge of X(¢) . First, this formulation is
presented for the first-order systems and then generalized for second-order systems.

1. First-order systems
Considering a first-order system, (I) can be rewritten as

N
2(1) = ) @igi(x) + Gulr) (5)
i=1

and its Laplace transform, component by component along the dimension of x, is

N r
X%(s) = sX;(s) - x;(0) = Z @; ®(s) + Z GixUi(s), j=1...n, (6)
k=1

i=1

where L{x;(t)} = X;(s), L{¢i(x)} = ®;(s), L{ur(t)} = Ui(s) and s is the Laplace variable. Note that ¢;(x) is an
implicit function of time and hence, the Laplace transform of this time varying signal can be considered. From now on,



capital letters are used for functions in the Laplace domain. Xj(.)f(s) is the original filtered signal (filtered O-th time). For
A1 € RL, let us consider the Laplace filtering operator

Iy: R — R,
. (7

° .
s+ A

Applying the operator to the signal X]Qf yields

X'f(s)= T (XOf( )) _ X - 5O §N D(s) + i G UM(s) 8)
A A A A _i:lawis 2, kU (5)- (
where,
D;(s) Ui (s)
ity = Pi 1) —
D, (s) = T and U,'(s) ST 9)

The exponent ! can be seen as “filtered once”. Note that the aforementioned equation corresponds to the integral form
of (1) with 4; = 0. A non-zero 4; allows us to take into account any errors in initial conditions. Now, adding and
subtracting A; X;(s) to (8] leads to the following expression

(s + A)X;(s) = 11 X;(s) — x;(0) -1 X;(s) = x;(0)

X;'(s) = s = Xj(s) + P AORS/AIC) (10)
where
—/11Xj(s) - )Cj(O)
Y: - ~J 7 I 11
j,l(s) (S T 11) ( )
(L1 can be rewritten as
sYj,1(5) + x;(0) = =41 Yj,1(s) — 41 X;(s) (12)
and its inverse Laplace transform yields the following ODE:
Vi) = —iyja(t) — 4ix;(o), (13)
¥7,1(0) = —x(0).

Similarly, the inverse Laplace transforms for C[)l!f and U ,if yield the corresponding first order ODE:s:

(1) = -9 (1) + ¢i(x), i=1,2,...,N, (14)
¢;"(0) =0,
I/'llg(l) = —/llu}(f(t) +ur(t), k=12,...,r, (15)
u, (0) =0.

Notice that if 1; = 0, then ¢;f and u}cf corresponds to time integration of ¢;(x(z)) and ug(z). For A4; > 0, the
aforementioned equations correspond to stable linear system of equations. By appropriately choosing the A;, one can
control the how quickly the initial condition response of these equations will go to zero. Finally, the final equation in the

time domain can be written as:
N r
10 = x;(0) + 300 = D\ @il O + " G (o). (16)
i=1 k=1

Note that the aforementioned equation provides a linear relationship between filtered signals x ]l.f(t), u}{f(t) and ¢l!f(t).
Furthermore, these filtered signals can be constructed directly from the given time histories of system state and control



input by integrating N +r + 1 equations given by (I3), (T4) and (T5). Stacking time histories for x}'(r), ¢"(r) and u; (1)
leads to the following matrix equation

. T
x]l.t :¢lfTO’j+ (Gjulf) (17)

where x]‘.f e R, ¢! e RV @; € RV*!, G; € R and u'f € R with [ being the number of data points. In this

equation, @; is the 7 column of the coefficient matrix @ introduced in (@) and G 7 is the j t row of the coefficient matrix
G introduced in ().

2. Derivation of a Least-Squares Solution

Now, one can find an optimal value of coefficient vector, @; through the solution of following weighted two-norm
minimization:

* 17 1f 17 i\"
a; =rgi_n§e Re, e=x; - ¢ a/j—(Gju ) (18)

The weight matrix R can be chosen appropriately depending upon the noise in the measurement data. Depending upon
the size of [ and N, the aforementioned optimization problem can be over-determined or underdetermined. In both the
cases, one can find the solution with an appropriate pseudo inverse of ¢'f, i.e.,

o7 = (le_fT _ Gjulf) ¢1fT _ f1f¢1fT (19)

- T . .
where le.f = x}f - Gjulf and ¥ stands for the pseudo-inverse. gblfT corresponds to the least square solution for

-1 .
. . ~ T o 1f T . - .
over-determined problem, i.e., ¢! = (¢lf R¢“) #'"" R while ¢''' corresponds to the minimum-norm solution for

. . -1
the under-determined case, i.e., q)“Jr = ¢lfTR (¢“R¢“T) . This procedure is repeated n times (for j = 1,2,...,n) to

compute the full coefficient matrix @. Note that one can also compute an estimate for control influence matrix , G
through this procedure given that it also appears linearly in (17).

3. Derivation of a Sparse Solution

The a* corresponds to the optimal solution in terms of minimizing the two-norm of state output error response.
However, the two-norm solution is not guaranteed to be sparse in nature and is known to pick all the basis functions
in our dictionary especially in the case of noise corrupted measurements. To enforce sparsity, ideally £y norm of the
coeflicient vector @; needs to be minimized subject to constraints of (I7). The £y norm corresponds to the cardinality
of the coefficient vector and its minimization leads to a non-convex problem. However, the £y norm minimization
problem can be approximated by an iterative £;-norm minimization problem which is convex in nature with a guaranteed
solution [26].

min ||W” 6% (20)
6° ]

J

<1f _ gpT (1f <1f _ xT L1f
s.t.“x 07" ¢ HZSst a; ¢ ”2’ ex>1 2n

where p is the iteration, 0;’ is the optimization variable, ¥'T is the pseudo signal, ¢'" is the dictionary of basis functions

and a;‘T is the optimal two-norm solution derived in the previous section. Notice that two-norm constraint of
corresponds to the satisfaction of (7). Rather than using the equality constraint of (T7), a two-norm error is bounded
by the optimal pseudo-norm solution with ¢ being the user-defined relaxation on two-norm error. This allows one to
tradeoff sparsity with approximation error. Furthermore W? is a diagonal matrix containing a known weight w; for the
i'" optimization variable. Initially, w; can be chosen based upon any a-priori knowledge about the structure of f, the
form of the least-squares solution or can simply be chosen to be one. In the subsequent iterations, the value of w; is
adapted according to the following formula to penalize the coefficients that are smaller than a predefined threshold ¢:

who L (22)

L p—l
et |+



n is a small number to avoid division by zero. This iterative procedure is repeated unless the computed coefficients
converged within a prescribed tolerance. The solution of this iterative £; minimization problem provides us a subset of
basis functions from an over-complete dictionary which plays a dominant role in underlying unknown dynamics. An
optimal pseudo-inverse solution for coeflicients is obtained for only these subset of basis functions. Figure ?? illustrates
these steps to obtain the sparse solution.

ITI. Numerical simulations
The sparse identification algorithm is applied to a panel flutter problem. Specifically, two cases are considered: (1)
The flutter of a panel with fixed temperature, which shows a level of chaotic response due to the high thermal stress; (2)
The response of the panel with prescribed increasing temperature, which resembles the aerothermoelastic behavior of a
panel in hypersonic flow.

A. The Panel Flutter Problem
The supposed unknown nondimensionalized expressions equations are

1 5 4 1 [ag, 1,

57T4111(f) ~ 5T Rrqi(1) + Z7T461f(f) - 5/16]20) + 52t qi(t)qs (1) + 5V 4 (1) + 341 (1) =0, (23a)
f 4 _ 2 4 2 4 3 l /1_# ’ 1 "N
3/lq1 (1) + 877 qa(t) = 20" Ry qa(t) + 51" g1 ()qa () + 207" g5 (1) + N q,(t) + 2q2 () =0. (23b)

where ¢g; and ¢, are structural modal coordinates, A is the dynamic pressure quantifying the aerodynamic loading, u
is the mass ratio quantifying the aerodynamic damping effect, Ry is the constant temperature increase in the panel
quantifying the thermal stress. When Ry = 0, there is a critical value A, such that the panel stays stable when 1 < A,
but enters limit cycle oscillation when 4 > A... When Ry > 0, the critical value A, still exists. However, the panel
may become statically buckled or enter chaotic response instead of being stable, when A < A,-.

The training dataset for the identification purpose corresponds to response of the system for ten different realizations

(initial condition responses), with initial condition g(0) = [ql(O) 00 O] T, 41(0) being a Gaussian random variable

of mean zero and covariance le — 3. The data is recorded at a frequency of S00Hz.The initial dictionary of basis function
consists of all monomials up to order 4 in the x; — x» — x3 — x4 space, resulting in 70 basis functions.

The procedure described Figure|l|ensures that a possible suitable sparse solution is found by solving the convex
{1-norm optimization problem described Eq. (20). First of all, Figure 2] shows the error resulting in the propagation
for different initial condition using the least-square solution and the sparse solution. The columns on the left is the
propagation for a random signal from the training set whereas the columns on the right concerns an arbitrary signal from
the testing set. Although the least-square solution performs satisfactory, this results in an over-fitting since we have more
basis functions than necessary. On the other hand, the resulting sparse identified model inherently and automatically
balances model complexity (because we assume that the dynamics are sparse in nature) with a little bit more accuracy,
avoiding over-fitting the model to the data. Figure [3|displays the coefficients found using a least-square solution and the
coeflicients from the sparse approximation method. Here, the least-square solution is able to give valuable insights
about the dominant basis functions and there is no doubt as for which basis functions are prevalent when looking at the
results from the sparse approximation. While the least-square solution is a combination of the 70 basis functions and
results in an obvious over-fitting, the sparse solution clearly identifies the predominant basis functions that explain the
dynamics better. Figure ] shows the evolution of the sparse solution coefficients during the iterative procedure; a few
iterations are enough to completely determine the solution in every direction. Tables [T} 2] B]and ] present the values
of the sparse coefficients at the very end of the iterative procedure (after final least-square solution). These identified
values appear to be very close to the real ones, up to 5 decimal places.
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Fig. 1 Illustration of the iterative procedure to derive a sparse solution
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Fig. 4 Iterative values of the sparse coefficients

Table 1  Value of the coefficients for the sparse solution vs the true coefficients - g

’ Basis Function H # in the dictionary ‘ True Value ‘ Sparse Solution ‘ Relative Error % ‘

’ X1, X2, X3, X4 > X3 H

15 \ 1 \ 1.00002 | —2.1073 |

Table 2 Value of the coefficients for the sparse solution vs the true coefficients - ¢}

’ Basis Function H # in the dictionary ‘ True Value ‘ Sparse Solution ‘ Relative Error % ‘

] X1, X2, X3, X4 > X4 H

35 |1 | 1oooor [ -1-10° |




Table 3  Value of the coefficients for the sparse solution vs the true coefficients - ¢}’

Basis Function H #in the dictionary | True Value | Sparse Solution | Relative Error %
X1, X2, X3, X4 F> X1 1 889.55135 889.55167 -3.60-107°
X1, X2, X3, X4 > x]3 3 —243.52273 —243.52277 -1.64-107
X1, X2, X3, X4 F> Xp 5 773.33333 773.33266 8.66 - 107>

X1, X2, X3, X4 > xlxg 10 -974.09091 -974.09220 -1.32-107*
X1, X2, X3, X4 F> X3 15 -0.76157 -0.76123 4.46-107*

Table 4 Value of the coefficients for the sparse solution vs the true coefficients - ¢

Basis Function H #in the dictionary | True Value | Sparse Solution | Relative Error %
X1, X2, X3, X4 F> X 1 —773.33333 —773.33436 -1.33-10™
X1, X2, X3, X4 F> Xp 7 2389.29630 2389.30681 —4.40- 107

X1,X2,X3, X4 > X7X) 9 —974.09091 —974.09264 -1.78 -107*
X1, X, X3, X4 > x; 18 —3896.36364 —3896.37920 -3.99.107*
X1, X2, X3, X4 F> X4 35 —-0.76157 —-0.76247 -1.18-1073

B. The Panel Flutter Problem with time-varying temperature increase
The supposed unknown nondimensionalized expressions equations are a modified set of panel flutter equations

1 5 4 1 [au 1,
st q1(1) = ST Rrqi(t) + cRr + 37 q)(1) = A1) + 57 (D)3 (1) + 5+ ZBgi0) + 24 () =0, (24a)
2 4 3 2N'm 2
4 4 2 42 4 3 L [Ap , 1,
5/16110) + 81" qa(t) — 20m° Ry q2(t) + 57" gy (t)q2(t) + 2077 g5 (t) + 3 ﬁqz(t) 3% (1) =0. (24b)
Rr=d (24c)

where Eq. is introduced to characterize the temperature increase in the panel during aerothermoelastic response,
and the linear term cRy in Eq. is introduced to characterize the effect of nonuniform temperature increase in the
thickness direction of a panel.

The training dataset for the identification purpose corresponds to response of the system for ten different realizations

(initial condition responses), with initial condition ¢(0) = [ql(O) 0 0 0] T, q1(0) being a Gaussian random

variable of mean zero and covariance le — 3. The data is recorded at a frequency of 1000Hz.The initial dictionary
of basis function consists of all monomials up to order 4 in the x; — x, — x3 — x4 — x5 space, resulting in 240 basis functions.

Once again, the procedure presented before is used to find the unknown coefficient vector. Figures [6]displays the
least squares as well as the sparse solution for coefficients for both the test cases. While the sparse solution correctly
identifies the correct basis functions, the least-squares fit non-zero amplitude for most of the basis functions. Figure 5]
shows the resulting error in the propagation for two signals, one belonging to the training set. Tables [5] [6] [7] [§]and [9]
present the values of the identified coefficients. These identified values appear to be very close to the true ones which
shows the efficacy of the developed methodology in identifying the true dynamics of the system. From these results,
it is clear that the proposed sparse approximation solution leads to several orders of magnitude improvement in state
propagation errors. This better performance of the sparse approximation method can be attributed to its ability to
identify the inherent true dynamics of the system.
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Fig. 5 Error in propagation
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Fig. 6 Coefficients for the least-square solution and the sparse solution (sparse solution is represented on top
of the least-square solution)

Table 5 Value of the coefficients for the sparse solution vs the true coefficients - g

’ Basis Function H # in the dictionary ‘ True Value ‘ Sparse Solution ‘ Relative Error % ‘

| X120, x5 5 33 || 15 |1 | o000 [ -1-105 |

Table 6 Value of the coefficients for the sparse solution vs the true coefficients - ¢}

’ Basis Function H # in the dictionary ‘ True Value ‘ Sparse Solution ‘ Relative Error % ‘

| X120, 00,05 5 1y || 35 \ 1 \ 1.00001 \ —-1-1075 |
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Table 7 Value of the coefficients for the sparse solution vs the true coefficients - ¢}’

Basis Function

H #in the dictionary | True Value | Sparse Solution | Relative Error %

X1, X2, X3, X4, X5 > X| 1 -97.40909 -97.40956 -4.83.107°
X1, X2, X3, X4, X5 > x]3 3 —243.52273 —243.52271 8.21-1078
X1, X2, X3, X4, X5 F> Xo 5 773.33333 773.33310 2.97-1077
X1, X2, X3, X4, X5 > X1 x% 10 —974.09091 -974.09073 1.85-1077
X1, X2, X3, X4, X5 > X3 15 -0.76157 -0.76169 1.58 - 10~
X1, X2, X3, X4, X5 F> X4 70 200 199.99946 2.70-107°
X1, X2, X3, X4, X5 > X1 X4 71 98.69604 98.69841 -2.40-1073

Table 8 Value of the coefficients for the sparse solution vs the true coefficients - ¢}

Basis Function H #in the dictionary | True Value | Sparse Solution | Relative Error %
X1, X2, X3, X4, X5 > X] 1 -773.33333 -773.33192 1.82-1076
X1, X2, X3, X4, X5 > X2 5 —1558.54545 —1558.54178 2.35-107°
X1, X2, X3, X4, X5 > XX 7 —974.09091 —974.09755 -6.82-107°
X1, X2, X3, X4, X5 > xg 12 —3896.36364 —3896.36310 1.39-1077
X1, X2, X3, X4, X5 F> X4 35 -0.76157 -0.76190 -4.33-10™*
X1, X2, X3, X4, X5 F> X4 74 98.69604 98.69617 -1.32-10°°

Table 9 Value of the coefficients for the sparse solution vs the true coefficients - Ry

’ Basis Function H # in the dictionary ‘ True Value ‘ Sparse Solution ‘ Relative Error % ‘

10.00001 | -1.00-10° |

’ X1,X2,X3,X4 > 1 H 0 ‘ 10 ‘

IV. Conclusion

This work presents a novel sparse system identification algorithm, a reliable and automatic technique to identify
governing equations of nonlinear dynamical systems from measured data. Using Laplace transformations and filtering,
the use of an iterative sparse regression algorithm on collected data to find the prevalent basis functions is shown to be
successful in explaining the overall dynamics of the systems considered. In the demonstration examples, the algorithm
successfully identifies the nonlinear governing equations of (1) a panel flutter system with fixed temperature, and (2) a
panel flutter system with time-varying temperature, resembling aerothermoelastic response. In both cases the system
parameters are identified with high accuracy, with errors close to zero.

Eventually the algorithm can be applied to build a compact reduced order model for a coupled thermal and structural
response in a high-fidelity aerothermoelastic simulation, or wind tunnel measurements for fluid-thermal-structural
interactions. High order nonlinear basis functions should be able to specifically capture critical instability behaviors, e.g.
thermal buckling and LCO, as well as the nonlinear effects introduced by aerothermal loads with higher-fidelity. The
identified nonlinear basis functions are expected to provide valuable insight into the aerothermoelastic behavior during
the wind tunnel experiments or from the computational analysis.
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