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Abstract— This paper describes the main features and the
most recent developments of system identification in the sense
of data-driven modeling of dynamical systems. A brief summary
of discrete time-invariant system identification techniques is
provided, from the modern work of Gilbert, Kalman and Ho
and the introduction of state-space realization, to the most
recent developments of the identification of discrete time-
varying and nonlinear systems. Important concepts of state-
space realization, controllability and observability for linear
systems are introduced along with more advanced methods to
identify nonlinear dynamics. Numerical examples of varying
complexity are considered to demonstrate the capability of the
different approaches presented in this paper.

I. INTRODUCTION

System identification as a research topic has attracted
some interest over the last decades and has been an
important discipline within the automatic control area,
robotics, structural engineering, reduced order modeling
and model testing [1], [2]. The special purpose of
dynamic system identification corresponds to identifying
a mathematical model describing a relationship between
the input and output of a real system. It is important
to distinguish two main basic questions in this context,
namely system identification on the one hand and parameter
estimation on the other hand. While parameter estimation
assumes the existence of a predefined model and uses
popular regression techniques to fit the model to time series
observations, this paper is mainly concerned with system
identification, i.e. with obtaining a mathematical model
from time series. However the two have been closely related
and parameter estimation historically paved the way for
the development of more sophisticated approaches used in
system identification.

In the early 19th century more accurate data from
observations of the orbits of the planets and the moon
became available due to improvements in telescopes,
leading to the method of least-squares introduced by
Legendre and Gauss. Along with the harmonic analysis
of Lagrange and the works of Euler and Fourier, the
least-squares technique is considered to be at the origin of
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data-driven modeling of dynamic systems. Although many
results on system identification appears in the statistics
(with Fisher in 1912) and econometrics literature in the 20th
century, a milestone is reached in 1965 for identification
theory in the control community due to the publication
of two influential papers [3] and [4]. These papers paved
the way for the development of the two mainstream
identification techniques that dominate the field today,
namely prediction-error identification (based on minimizing
a parameter-dependent criterion) and subspace identification
(based on projection techniques in Euclidean space).

In their paper, Astrom and Bohlin [3] introduced into the
control community the maximum likelihood framework that
had been developed by time-series analysts for estimating
the parameters of difference equation models [5], [6].
These models, which were known in the statistical literature
as ARMA (autoregressive moving average) or ARMAX
models (autoregressive moving average with exogeneous
inputs), later gave rise to the prediction-error identification
framework. On the other hand, Gilbert and Kalman [7],
[8] introduced the important principles of realization
theory in terms of the concepts of controllability and
observability, focusing on linear system identification with
a special emphasis on identifying the minimal state space
representation to define the subspace over which the system
dynamics evolves. They first introduced the concept of state-
variable equations which realize the external description via
an equivalent internal description of a dynamical system.
Whether the analyst or the engineer is interested in the
synthesis or the analysis, these equations are an efficient
and useful model with which one can proceed to further
analysis and optimization. The problem of realization for
linear time invariant systems was first stated by Gilbert [7]
who provided an algorithm for computing the map transfer
function matrix to state-variable differential equations. A
second algorithm for the same problem was given at the same
time by Kalman [8] using the theory of controllability and
observability and requiring linear algebra type computation
(state-space models are particularly suitable since they lend
themselves to linear algebra techniques, robust numerical
simulation, and modern control design methods). A few
years later, Ho and Kalman [4] approached this problem
from a new viewpoint. They showed that the minimum
realization problem is equivalent to a representation problem
involving a sequence of real matrices known as Markov
parameters (pulse response samples). Minimum realization
means a model with the smallest state-space dimension
among all possible systems realized that have the same



input-output relations and although several techniques of
minimum realization are available in the literature, formal
direct application to modal parameter identification for
flexible structures was not addressed until 1984.

During the 90s, building upon the initial work by Gilbert
and Kalman, several methods have been developed to
identify most observable and controllable subspace of
the system from given input-output (I/O) data [9]-[13].
Under the interaction of structure and control disciplines,
the Eigensystem Realization Algorithm (ERA) [9] was
developed for modal parameter identification and model
reduction of dynamic systems using test data. The
algorithm presents a unified framework for modal parameter
identification based on the Markov parameters (i.e., pulse
response) making it possible to construct a Hankel matrix
as the basis for the realization of a discrete-time state-space
model. A few years later at NASA, Juang developed a
method for simultaneously identify a linear state-space
model and the associated Kalman filter from noisy input-
output measurements. Known as the Observer/Kalman
Identification Algorithm (OKID) and formulated entirely
in the time-domain, it computes the Markov parameters
of a linear system, from which the state-space model and
a corresponding observer are determined simultaneously
[14]-[17]. The method relies on an observer equation to
compress the dynamics of the system and efficiently estimate
the associated system parameters (Markov parameters).
In conjunction with the ERA, the method provides
simultaneously both the Markov parameters and the Kalman
gain, extracting all the possible information present in
the data. The observer at the core of the method was
proven to be the steady-state Kalman filter corresponding
to the system to be identified. Later, the ERA with Data
Correlation (ERA/DC) is developed [10], [18]-[20] and
while the ERA is, in essence, a least-squares fit to the pulse
response measurements, the ERA/DC involves a fit to the
output auto-correlation and cross-correlations over a defined
number of lag values.

State-space realizations methods have been shown to work
very well for numerical simulations, and for experimental
results from structures with modes which are well separated
in frequency. The popularity of these methods lies in the
simplicity with which the model order can be selected. In
general, linear system identification methods are able to
capture the main physics as well as the subspace in which
the dynamics is evolving. However, linear methods are
unable to capture nonlinearities and limitations appear when
these state-space methods are applied to complex structures
or when a linear description is not accurate enough to fully
capture the dynamics within a specific operating range
of the system. As contrary to linear system identification,
nonlinear system identification problems are still treated
mostly on a system-by-system basis with popular methods
being Volterra series models [2], [21], [22], global-local
learning [23], [24] and neural network (NN) models [25],

[26]. The main essence of nonlinear system identification
methods has been to expand the nonlinear unknown function
as a linear combination of basis functions or kernels and
their amplitude. Many of these methods differ in their
choice of basis functions and their learning methodology.
Methods like Volterra series approximation utilize Volterra
kernels to provide a global approximation of the underlying
dynamics while global-local approximation methods merge
various local approximations valid in a local region to find a
global approximation of the underlying dynamics [23]. More
prevalent machine learning methods such as multi-layered
NNs (also known as deep NNs) use a composition of
nonlinear transformations to approximate the unknown I/O
mapping. Each layer of the NN corresponds to one nonlinear
transformation which is represented by a linear combination
of fixed basis such as sigmoid functions known as neurons
or perceptrons. According to Cover and Kolmogorov’s
theorems [27], [28], multi-layer NNs can serve as universal
approximators, but in actuality, they offer no guarantee on
accuracy in practice for a reasonable dimensionality (global
and distributed approximation can be at the expense of
high parametric dimensionality). Furthermore, the learning
of parameters for multi-layer NN often involves nonlinear
optimization due to composition of multiple nonlinear
transformations. All of these methods focus on improving
the approximation accuracy by increasing the number of
parameters of the models in a brute force manner by
increasing the number of basis functions, local models
and/or layers of the network. A key issue arises because
if one fixes the architecture and basis functions, a given
method’s ability to approximate a given system’s behavior
can be deduced only after the learning process is over.
Adaptation of the approximation architecture, not simply
adjusting weights in a fixed architecture, has emerged as
the key to convergence reliability and accuracy. Therefore,
approximation capabilities of state-of-the-art machine
learning approaches (particularly deep learning) in capturing
the underlying physical characteristics of a dynamical
system remain poorly understood due to the fact that
these algorithms are unable to learn underlying physical
features (or characteristics) of the system. Even though
some methods for the identification of nonlinear systems
seem promising, resulting models often are profligate and
lack the convenience of a linear framework description,
especially for optimization, optimal and robust control and
uncertainty quantification.

An alternative that regained interest in the past decade
is the Koopman operator theoretic approach to obtain
precise predictions of a nonlinear dynamical system as the
output of a truncated linear dynamical system. The main
idea behind the Koopman theory [29], [30] is to lift the
nonlinear dynamics into a higher dimensional space where
the evolution of the flow of the system can be linear. The
resulting operator, called Koopman operator, is a linear
operator that governs the evolution of scalar functions (the
measurements of the nonlinear system). Even though the



core challenge of the Koopman operator theoretic approach
is to specify (directly or indirectly through decompositions)
the Hilbert space of measurement functions of the state of
the system, the theory has been applied for uncontrolled
[31], [32] and controlled systems [33], [34] with promising
results using popular subspace realization methods such
as ERA or Dynamic Mode Decomposition (DMD) and its
extensions [35]. The resulting linear operator is a local
approximator of the nonlinear dynamical system valid in the
neighborhood of a nominal point and the domain of validity
of this local linear approximation improves as the dimension
of the lifting space is increased. However, one may need a
very large dimensional lifting space to accurately capture
the flow of the underlying nonlinear system.

In general, one of the alternative to improve the validity
region of a linear operator (and curtail the dimension of the
lifting space for the Koopman framework) is to consider
the linearization of the nonlinear flow about a nominal
trajectory of the nonlinear system rather than a nominal
point. The linearization about a nominal trajectory leads
to a linear time varying (LTV) system as opposed to a
linear time invariant (LTI) system for a conventional linear
operator. Earliest efforts in the development of methods
for linear time-varying systems involved recursive and fast
implementations of the time invariant methods by exploring
structural properties of the input/output realizations. The
classic paper by Chu et. al, exploring the displacement
structure in the Hankel matrices is representative of the
efforts of this nature. Subsequently, significant results were
obtained by Shokoohi and Silverman [36] and Dewilde and
Van der Veen [37], that generalized several concepts in the
classical linear time invariant system theory consistently.
The idea of repeated experiments have been introduced
[38], [39] and presented as practical methods to realize
the conceptual state-space model identification strategies.
However, LTV systems exhibit distinct properties, as
compared to the shift invariance exhibited by LTI systems.
All the subspace methods for LTI system identification
exploit the fact that an infinity of system realizations exist
and actually share the same Markov parameters and the
eigenvalues of the state transition matrix. However, no such
property exists for LTV systems and the lack of similarity
transformations handicaps the application of conventional
subspace methods to identify LTV systems. In our earlier
work [40], [41], it is shown that there actually exists special
reference frames, in which the identified models are similar
to the true model, i.e., state transition matrices share the
same eigenvalues. Using this key result the realizations
can be compared across different data sets. This forms
the basis for spectral characterization of time-varying
systems and the resulting algorithm is known as the
time-varying eigensystem realization algorithm (TVERA).
In parallel, using an asymptotically stable observer (to
remedy the problem of unbounded growth in the number of
experiments), a time-varying observer/Kalman-filter system
identification (TVOKID) have been implemented to work

alongside TVERA.

II. DETERMINISTIC REALIZATION THEORY

In 1965, Ho and Kalman [4] provided a first solution
to the challenging system-theoretic problem that became
known as the state-space realization problem. It can be stated
as follows. Construct a minimal discrete-time state-space
realization:

(1)
(1b)

LTyl = Az + Buy,
Y = Cxy + Duy,

together with an initial state vector x(, where x; € R”,
ur € R" and y,, € R™ are the state, control input and output
vectors respectively. The constant matrices A € R"*", B €
R™", C € R™™ and D € R"™"™ represent the internal
operation of the linear system, and are used to determine the
system’s response to any input. The input-output model (or
weighting sequence description)

k
yp = CA*zo+ > CA™'Bup_; + Dup  (a)
=1

introduces the constant matrices sequence

D i =0,
hi={ CA~'B i>1, 3)
0 1 <0

known as Markov parameters. Essentially, the problem is to
replace the infinite description

G(z) = Z hiz™" “)
i=1

with a finite description
G(z)=C(:I-A)~'B 5)

so that A has minimal dimension. This problem can be
divided into two parts, namely, find the degree of G(z2)
(which is then the minimal dimension of A), and compute
the system matrices A, B,C. The Ho-Kalman procedure
uses the Hankel matrix for solving this problem, whose
factorization into the product of the observability matrix and
controllability matrix is given by

hetr hito hktq
, hik+2  hits Pretq+1
e ’ (6a)
Pktp  Pktpt1 Pktprq—1
=0 A*R. (6b)

The fundamental property highlighted by Ho and Kalman
is that if the degree of G(z) is n (or the dimension of A is
n x n) then rank(Hff”q)) = n and there exist A, B,C of
appropriate dimension such that hy, = CA*~'B for i > 1.
The methodology has then been modified and substantially
extended to develop the Eigensystem Realization Algorithm
(ERA) [9], [10] to identify modal parameters from noisy



measurement data and include data correlations.

Most techniques to identify the Markov parameters
sequence Eq. (3) are based on the Fast Fourier Transform
(FFT) of the inputs and measured outputs to compute the
Frequency Response Functions (FRFs), and then use the
Inverse Discrete Fourier Transform (IDFT) to compute the
sampled pulse response histories. The discrete nature of
the FFT causes one to obtain pulse response rather than
impulse response, and a somewhat rich input is required
to prevent numerical ill-conditioning. Indeed, the FRF
is a ratio between the output and input DFT transform
coefficients which requires the input signal to be rich in
frequencies so that the corresponding quantity is invertible.
However, considerable information can be deduced simply
by observing frequency response functions, justifying why
FRFs are still generated so often. Another approach is to
solve directly in the time domain for the system Markov
parameters from the input and output data. In [14], a method
has been developed to compute the Markov parameters of
a linear system in the time-domain. A drawback of this
direct time-domain method is the need to invert an input
matrix which necessarily becomes particularly large for
lightly damped systems. Rather than identifying the system
Markov parameters which may exhibit very slow decay,
one can use an asymptotically stable observer to form
a stable discrete state-space model for the system to be
identified. The method is referred as the Observer/Kalman
filter Identification algorithm (OKID) and is a procedure
where the state-space model and a corresponding observer
are determined simultaneously [15]-[17]. Figure 1 below
summarizes the ERA procedure.

. . o oy y(q)
Physical or Computational Hankel Matrix y(
Experiment H) = y(?) y(3) i y(g+1)
y(p) yp+1) - yp+a-1)
CB  CAB ... CA"'B
CAB  CA’B CcAB
H(0) = K o :
AP-'B CAPB .. CAP*4-2B
A
C|B 4B ... a1B]
R [ e
R,
rank [R,] = n
k[HOI=n| k[0, =n
3
0, =U.%/?
fm T\ R, =3V]

A=O}H(1)R} ==V *'UTH()V, 2,/
B=R,E, =S!/*V]IE,
C=EL0,=ELU,%/*

Fig. 1: Illustration of the ERA algorithm

The ERA has occupied the center stage in the current
system identification theory and practice owing to its ease,
efficiency, and robustness of implementation in several
spheres of engineering. Connections of ERA with modal
and principal component analyses made the algorithm an
invaluable tool for the analysis of mechanical systems. As
a consequence, the associated algorithms have contributed
to several successful applications in design, control, and

model order reduction of mechanical systems. Because both
left and right singular vector matrices of the singular value
decomposition are used, ERA yields state space realizations
that are not only minimal but also balanced. While the key
utility of ERA has been in the development of discrete-time
invariant models from input and output experimental
data, a consistent computational algorithm could not be
formulated for time-varying models because of some gaps
in implementing the incomplete theoretical ideas formulated
by the researchers in the past. Development of methods
for time-varying systems have involved recursive and fast
implementations of time invariant methods by exploring
structural properties of the input—output realizations [42]
or by generalizing several concepts in classical linear
time invariant system theory consistently [36], [37]. More
recent efforts [43] have concentrated on extending LTI
subspace realizations methods by considering moving time
windows and weighting factors on the data sequence or
introducing explicit parameters to take into account the
time-varying amplitude of the corresponding modes during
the decomposition phase of the algorithm [44]. However,
these efforts suffer from the lack of a method to find
similarity transformations between the model sequences for
LTV systems obtained from different experimental data sets.
For example, the algorithm outlined in [43] is applicable
to identify a LTV system from initial condition response
data. Mixed experiments, including initial condition and
controlled input response experiments, result in identification
of different realization, of system matrices at each time.
If there were different coordinate systems defined by the
Lyapunov transformation wj; = T}z, whose state space
realization is given by w1 = Frwy + Gruy, along with
Y, = Hrwy + Dyuyg, then the realizations Ay, Fj, are NOT
similar. This is in sharp contrast to the LTI theory, where a
variety of realizations (all of infinity of them, that share the
same Markov parameters) share the same spectrum. Hence,
the lack of a method to find a common reference frame in
which different realizations for the LTV system are similar
is considered the main drawback of many LTV system
identification methods. From a perspective of generalizing
the LTI subspace methods to the case of time-varying
systems, a time-varying version of ERA has been developed
in [40], and it is shown that there exists special reference
frames in which the models are similar, i.e., Ak,ﬁk share
the same eigenvalues. This special reference frame can be
determined from controllability and observability matrices
corresponding to different realizations of the system
matrices. Furthermore, an asymptotically stable observer (to
remedy the problem of unbounded growth in the number
of experiments), a companion algorithm, the time-varying
observer/Kalman-filter system identification (TVOKID),
has been developed to work alongside with TVERA for
the identification of time-varying Markov parameters from
experimental data [41].

To get insight into the TVERA process, let us consider



the solution of the difference equation
k—1
Y = Ce®roxo + Y h(k,i)u; + Dyuy (7)
i=0

where ®(k,i + 1) is the state-transition matrix defined as

Ak_lAk_Q...AkU for k > ko,
Dk, ko) = I for k = ko, )
undefined for k < k.

and hy; are the generalized Markov parameters (or pulse
response matrix) defined as

Cy®(k,i+1)B; fori<k—1,
o Ck-Bk,1 fori =k — ].,
i =\ D, for i = k, ©)
0 for 7 > k.

The identification of time-varying system matrices involves
the construction of a Hankel matrix H ;Cp ) at each time step
consisting of generalized Markov parameters,

Pk k—1 R —2 Rk k—q
Hff”n _ hk+1',k71 hk+1.7k72 hk+1',lch
Pitp—1k-1  Phgp—1,k—2 Ritp—1,k—q
=0 R, (10)

where Oép ) and R,@l are the observability and control-
lability matrices. The generalized Markov parameters are
identified through a least squares process from y, time
histories obtained from forced response experiments using
TVOKID [41]. Notice that the rank of the Hankel matrix will
be n for a fully controllable and observable system otherwise
the rank of the Hankel matrix will be equal to the rank
of a completely observable and controllable subspace. The
singular-value decomposition (SVD) of H ,(f ) allows for the
identification of the current observability and controllability

matrices,
HP —U,3, v, 2y — 0P R,
1D
o® —ymgm'?
(/2 mT

=
R, =3

12)

where 22") contains n non-zero singular values of the Han-
kel matrix and matrices U,(:') and V;,") are constructed from
the first n columns of Uy and V. Finally, the following
expression for the identified system matrices are obtained
by considering the block shifted Hankel matrices [40]

Ay, = OgﬁlTOép)T, By, = ngq)[:, 1:7], (13)
Cr =0V [1:n,:], Dy = hyp. (14)

Note that 0" = O) | Ay, is the block shifted observability
matrix.

It is important to note that the Hankel matrix H P9
cannot be constructed for k£ < ¢ as the generalized Markov
parameters R x—q, Pk4+1,k—qy " > Rkgp—1,k—q dO nOt exist.
In contrast with the classical formulation of ERA, a second
set of experiments (initial condition response experiments)
is introduced for the construction of the Hankel matrix for
the first few time steps as explained more in details in [40].
Hence, one obtains two sets of realizations for k£ < ¢ and
k > q. Even though the realized models are topologically
equivalent from an input and output standpoint, this does not
imply that they are in coordinate systems consistent in time
for state propagation purposes. While it is shown in [40] that
realizations originating from the same set of experiments are
compatible with one another (in other words, the coordinate
systems at successive time steps are compatible with one
another which makes the model sequences realized useful
in state propagation), it is straightforward to see that the
initial state given in a certain coordinate system cannot be
propagated to the next time step unless the state transition
and control influence matrices are expressed in the same (or
compatible) coordinate system as the initial state of interest.
Any misalignment would cause the state propagation to be
physically meaningless and the identified plant model(s) are
rendered useless. In essence, system matrices realized for
k < q and k > ¢ need to be made compatible with one
another through a coordinate transformation (isomorphic
transformation between successive frames).

Two equivalent realizations Ay and flk are not similar;
rather they are topologically equivalent. Topological equiv-
alence (or kinematic equivalence) means that there exists a
sequence of invertible, square matrices 7}, such that

Ay, = T, ART. (15)

Because the system evolution takes place in two different
coordinate systems defined by T} and T}, respectively,
this leads the basis vectors for the initial time step and the
final time step to be different. These frames are defined by
left and right eigenvectors of the Hankel matrix during the
identification of observability and controllability matrices.

Following the development ip [40], let us consider Ak as
the linear transformation of Ay:

X ~ T ~ ~
A = O, Op14;
= Tk_lokTOk—HTk—&-lT;;,_llAka
=T, 0,104 11 AL Ty,
—_—

Ay

=T AT, (16)

where Oy, is the observability matrix at time k and by virtue

of (16), flk and flk are now similar matrices, i.e, they share
the same eigenvalues (Figure 2). One can utilize the ob-
servability matrices corresponding to two different identified
realizations of the system matrices to define a common frame
to predict the system response. In this new frame, the two
different realizations are also guaranteed to be similar. This



is a central result for the system identification problem: when
the true and identified systems are kinematically similar
realizations, the true and identified systems share common
eigenvalues after transformation. The same transformation is
to be applied for system matrices from different realizations
if they originate from different sets of experiments (at time
k = q for propagation purposes). Figure 3 summarizes the
TVERA procedure.

z(k + 1) = Az(k) + Bu(k)

y(k) = Cz(k) + Du(k) y(k) = C&(k) + Du(k)
A CA=T7'AT
B Equivalent Realizations . B —7-1B
C Similarity Tv_znsformation C=cCT
D -D=D

z(k +1) = Ayz(k) + Bru(k) &(k +1) = Aci (k) + Bru(k)

x(k) = Trz(k ~ -
y(k) = Crz(k) + Dyu(k) y(k) = Crz(k) + Dyu(k)
A -1
A Topologically Equivalent : "‘}k =T ATk
By Reslizaions - By =Tg) By
Cy Kinematically Similar Cr, = CyTy
Dk Transformation X Dk _ Dk

Fig. 2: Illustration of equivalent realizations for LTI vs
LTV systems: equivalent realizations for LTI systems are
similarity transforms whereas equivalent realizations for LTV
systems are kinematically similarity transforms.
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yOk+p=1) yOk+p-1) - yMk+p-1) Gy = ELOY

Fig. 3: Illustration of the TVERA procedure

III. NUMERICAL EXAMPLES

This section considers two problems to showcase the
utility of the algorithms presented in this paper in predicting
the response of a dynamical system. The first benchmark
problem, the Duffing oscillator, is declined in of increasing
complexity by tuning the parameters

A. Duffing Oscillator

The first example corresponds to the nonlinear oscillator
known as the Duffing oscillator governed by following

equations with time-varying coefficients

(17a)
(17b)

T =1y,
§=—=0(t)y — a(t)z — B(t)a® + u(t)
Three different cases of increasing complexity are considered

corresponding to different dynamics:
1) o 6(t)=cst=0.2

e aft)=cst=1
e B(t)=cst=0
2) e 6(t) =0.2+0.2sin(2r x 2 x t)
e at)=1405sin(2r x 3 x t+7/2)
e B(t)=cst=0
3) e §(t) =cst=0.2
e aft)=cst=1

e B(t)=cst=0.02< 1

Case 1 corresponds to a linear time-invariant (LTT) system
while case 2 is linear time-varying (LTV). Case 3 introduces
a slight nonlinearity with 3(¢) # 0. For identification
purposes, data is acquired for 20 seconds at a frequency
of 10 Hz. Figures 5d, 5e and 5f show the phase plots
displaying the true and identified trajectories while Figures
5a, 5b and 5c show the associated prediction error. As
expected, the prediction error corresponding to the case 1
(LTT system) is close to machine precision as we expect
perfect reconstruction. Non negligible error is introduced for
case 2 as parameters vary in time and the identified model
tends to average the oscillations due to variations in 6(¢) and
a(t). It is important to mention that the true and identified
system matrices for case 1 are related with a similarity
transformation (as summarized in Figure 2), hence sharing
the same modal properties. This is confirmed by Figure 4
where the eigenvalues of the true and identified A matrices
are plotted, matching up to machine precision (absolute error
of the order of 10~14).

0.10 A [ ]
3
=
S 0.05
f=
[
.20
[
% @® True
S 0.0 .
5 O Identified
o
[
2 —0.05
oo
©
£
—0.10 4 [ ]
T T
0.95 1.00

Real part of eigenvalues

Fig. 4: Eigenvalues of true vs. identified A matrices for case
1

The last case highlights the difficulty to approximate
nonlinear dynamics with a LTI model, even when the
nonlinearity is small. The error in propagation is now of the
order of magnitude of the measured state, invalidating the
use of such algorithms for this class of systems.
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Fig. 5: Prediction and error for the Duffing oscillator using ERA.

As explained in the previous section, one can consider a
linearization of the nonlinear flow about a nominal trajectory
of the nonlinear system rather than a nominal point. The
linearization about a nominal trajectory leads to a linear time
varying (LTV) system as opposed to a linear time invariant
(LTT) system for the conventional ERA. An extension of the
ERA algorithm has been developed for the identification of
LTV systems in [40], [41] and this section considers utilizes
this algorithm to better approximate the time-varying nonlin-
ear dynamics of the Duffing oscillator. For this representative
case, it is desired to identify the time-varying linear departure
dynamics from a nominal trajectory with initial condition
xo = [0.1 —0.2]T, input u(t) = 0.1square(27t) and time-
varying coefficients

0(t) = 0.2 4+ 0.1sin(4nt) (18a)
a(t) =14 0.1sin(6nt + 7/2) (18b)
B(t) = —1+0.1sin(8xt + ) (18¢)

The measurement data is recorded at a frequency of 10 Hz
for 20 seconds for simulation purposes. A true trajectory
is simulated by random sampling of initial deviation from
a zero mean Gaussian distribution with standard deviation
of 0.05 with deviated input signal ou(t) = 0.1sin(1.5%)
for testing purposes. Figure 6a shows the phase plot with
the four trajectories: the nominal trajectory, the true trajec-
tory, the identified trajectory and the trajectory from actual
linearization of (17) about the nominal trajectory. Figures
6b and 6¢ display a closer look at the prediction. From
these plots, it is clear that the accuracy the time-varying
model is superior to a conventional linearization about the
initial condition. Table II shows the root mean squared error

(RMSE) averaged over 10 random runs. As expected, the
prediction error corresponding to time-varying operator is
much better than prediction errors corresponding to any
true linearization. These results clearly demonstrates the
effectiveness of a time-varying model derived with TVERA.

TABLE I: RMSE for the Duffing departure trajectories

Method RMSE
TVERA 3.4-1073
True linearization | 5.7 - 10~2

B. Time-varying Koopman operator

This section introduces the time-varying Koopman oper-
ator in predicting the response of a nonlinear system. A
finite dimension approximation of the infinite dimensional
Koopman operator is discussed where polynomial basis
functions are considered for the lifting process and time-
invariant Koopman operator is also identified to showcase the
accuracy gained for the same degree of the lifting process.
Considering the exact same dynamics as in Eq. 17 with
coefficients described in Eq. 18, the Koopman operator is
augmented with polynomial measurements in z and y in
three different scenarios:

1) Case 1: Linear basis functions in z and .
2) Case 2: Basis function up to degree 2 in x and y.
3) Case 3: Basis functions up to degree 3 in x and y.

The measurement data is recorded at a frequency of
10 Hz for 20 seconds for simulation purposes. For this
representative case, it is desired to identify the time-varying
linear departure dynamics from the nominal trajectory. A
nominal trajectory with initial condition g = [0.1 —0.2] T
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Fig. 6: Prediction along the nominal for the Duffing oscillator using TVERA.

and zero input is considered. A true trajectory is simulated
by random sampling of initial deviation from a zero mean
Gaussian distribution with standard deviation of 0.05 with
input signal du(t) = 0.1sin(1.5¢) for identification purposes.

Figure 7a shows the phase plot with the four trajectories:
the nominal trajectory, the true trajectory, the identified
trajectory and the trajectory from actual linearization of (17)
about the nominal trajectory. Figures 7b and 7c show the
prediction error corresponding to time-invariant as well as
time varying Koopman operator for all the three cases. From
these plots, it is clear that the accuracy of the time-invariant
as well as time-varying Koopman operators improves with
the increase in lifted degree. Furthermore, the time-varying
Koopman operator provides at least two order of magnitude
better prediction accuracy than the prediction errors corre-
sponding to conventional time-invariant Koopman operator
for all the three test cases. While the accuracy of the time-
invariant Koopman operator for lifted degree 3, i.e., test
case 3 is comparable to actual linearization of the nonlinear
flow, the prediction accuracy corresponding to time-varying
Koopman operator is five orders of magnitude better than its
time-invariant counterpart for lifted degree 3. Finally, Table
IT shows the root mean squared error (RMSE) averaged over
10 random runs for all the three test cases. As expected,
the prediction errors corresponding to time-varying Koopman
operator are 3-4 orders of magnitude better than prediction
errors corresponding to time-invariant Koopman operator.
These results clearly demonstrates the effectiveness of the
time-varying Koopman operator as compared to conventional
time-invariant Koopman operator.

TABLE II: RMSE for the Duffing departure trajectories
| Lifted space | TI Koopman | TV Koopman |

Case 1 7.5-1073 8.8-107°
Case 2 6.9-10°3 2.4-107°
Case 3 8.0-1074 9.1-10°8
Actual Linearization 7.1-107%

IV. CONCLUSION

This paper has introduced a subspace-based identification
technique known as the Eigensystem Realization Algorithm
(alongside with the Observer/Kalman Idntification Algo-
rithm) to identify discrete time-invariant linear dynamics
from I/O data. Two additional algorithms (TVERA and
TVOKID) generalize this approach to discrete time-varying
linear dynamics and are applied to identify the departure dy-
namics along a nominal trajectory of a nonlinear dynamical
system. Numerical examples based on the Duffing oscillator
show the reliability and robustness of these techniques.
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