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The coupled analysis between the flight dynamics, structural dynamics, heat transfer, and
hypersonic aerothermodynamics, viz. AeroThermoServoElasticity (ATSE), is a key ingredient
for evaluating the performance, stability, and reliability of hypersonic vehicles. A thorough
performance analysis for ATSE is computationally intractable with high fidelity models for
each discipline. Hence, there is a need to develop accurate reduced order models (ROM)
for aerothermodynamics as well as thermoelasticity. This work exploits the latest advances
in dynamic system theory to develop a reduced order model for aerothermoelastic analysis.
The Time-Varying Eigensystem Realization Algorithm (TVERA) is used to identify a linear
time varying (LTV) model from a high fidelity computational framework with guaranteed
observability. The simulations performed show a good agreement between the reduced-order
and high fidelity models.

I. Introduction

Air-breathing hypersonic vehicles are under increasingly active development in the recent years [, 2]. This
class of vehicles are expected to operate at high Mach number in the atmosphere for the entire mission profile
that can last for 30 minutes or even longer time. Due to the high speeds, the vehicle is exposed to the extreme
aerothermodynamic environment involving combined aero-thermo-acoustical loadings. The aerothermal loads are
due to the hypersonic aerodynamic pressure and heat flux. The acoustical loads are inherently stochastic and mainly
due to the strong turbulent interaction present in the hypersonic boundary layer over the complex vehicle geometry.
The high heating rates lead to degradation of material properties. The thermal stresses introduced by the temperature
gradients and geometrical constraints affect the structural integrity and cause structural instabilities, including buckling
and flutter. The thermoelastic effect further impacts the controllability of the vehicle, esp. the response effectiveness
of aerodynamic control surfaces. It is clear that the coupling between the structural dynamics, heat transfer, and
hypersonic aerothermodynamics, viz. aerothermoelasticity, constitutes the core subsystem governing the operation
of a hypersonic vehicle. The predictive aerothermoelastic capability over extended flight time is a key ingredient for
analyzing performance, stability, and reliability of hypersonic vehicles.

However, due to the current limited capability of ground tests and the lack of available flight test data, there is a
significant degree of uncertainty associated with the aerothermoelastic modeling of hypersonic vehicles and limited
ability to alleviate this uncertainty through experimental testing [3]]. Therefore, the aerothermoelastic analysis, as a
high-dimensional nonlinear multi-physics problem spanning across multiple spatial and temporal scales, involves strong
stochastic dynamics as well as model uncertainties that is due to either imperfect high-fidelity models or reduced-order
models. The uncertainty propagate across the coupling interfaces between the models and aggregate over time in
the aerothermoelastic analysis. While there is a large body of research conducted on the uncertainty quantification
(UQ) of aeroelasticity and aerothermoelasticity, the studies either focused on the calibration of models of a single
discipline [4-7], or the quantification of several parametric stochastic variables in coupled analysis [[8,9]]. Significant
algorithmic development is required to identify, quantify, and propagate these stochastic effects and model errors through
a time-dependent, high-dimensional state space, as is the case for hypersonic aerothermoelastic analysis.

Currently, the aerothermoelastic analysis is typically carried out using a computationally efficient kriging-based
aerothermal surrogate coupled to nonlinear finite element models for structural dynamics and heat transfer, i.e. the
thermoelastic solver [10-H12]. It is relatively easy to quantify and propagate the uncertainty associated with the
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aerothermal loads by exploiting the mathematical formulation for kriging [[13]. However, uncertainty quantification and
propagation in a nonlinear thermoelastic model is challenging in general. As a step towards the efficient uncertainty
quantification in aerothermoelastic analysis, we propose to develop a new time-varying linear reduced-order model
(ROM), via a system identification formalism, for the high-dimensional nonlinear thermoelastic solver in the conventional
aerothermoelastic analysis. Once such a linear ROM becomes available, the UQ of aerothermoelastic analysis over
extended time will become tractable. This paper uses an implementation of a time-varying version of the Eigensystem
Realization Algorithm (ERA) in order to obtain this time-varying linear reduced-order model.

Since the mid-sixties the field of system identification has been an important discipline within the automatic control
area, structural engineering, modal testing and the recent developments in the field of system identification provide
effective and accurate analytical tools to solve challenging problems in system engineering. During the 70s and 80s,
numerous algorithms for the construction of state-space representations of linear systems have appeared in the controls
literature. Although several techniques of minimum realization are available in the literature [[15H18]], formal direct
application to modal parameter identification for flexible structures was not addressed until 1984. Under the interaction
of structure and control disciplines, the Eigensystem Realization Algorithm [19}20]] was developed for modal parameter
identification and model reduction of dynamic systems using test data. During the 90s, many system identification
techniques have been developed and/or applied to identify a state-space model for modal parameter identification of large
flexible aerospace structures, such as the Hubble Spacecraft Telescope [21]. The Observer/Kalman Identification (OKID)
algorithm, formulated entirely in the time-domain, computes the Markov parameters of a time invariant linear system,
from which the state-space model and a corresponding observer are determined simultaneously [22]]. In parallel, several
efforts have been made for developing time-varying models and to generalize ERA to the case of time-varying systems.
Development of methods for time-varying systems have involved recursive and fast implementations of the time invariant
methods by exploring structural properties of the input—output realizations [23] or by generalizing several concepts in
the classical linear time invariant system theory consistently [24, 25]]. Later, the idea of repeated experiments have
been introduced [26, [27] and presented as practical methods to realize the conceptual state space model identification
strategies presented earlier. From a perspective of generalizing the ERA to the case of time-varying systems Majji,
Juang and Junkins [28]] developed a time-varying version of ERA. Additionally, they showed that the generalization thus
made enables the identification of time-varying plant models that are in arbitrary coordinate systems at each time step
and that the coordinate systems at successive time steps are compatible with one another, making the model sequences
realized useful in state propagation. In complement, using an asymptotically stable observer (to remedy the problem
of unbounded growth in the number of experiments), they developed the time-varying observer/Kalman-filter system
identification (TVOKID) to work with TVERA.

In 2010, Schmid [30] introduces a Dynamic Mode Decomposition (DMD) algorithm to extract dynamic information
from flow fields either from simulated models or physical experiments. The extracted dynamic modes are associated to
a lower dimensional subspace which best describes the underlying physical mechanisms captured in the data sequence
with significantly fewer degrees of freedom. Originally introduced in the fluid mechanics community, the original
authors of DMD never realized nor acknowledge that DMD is indeed a special case of ERA. A few years later, it is
shown that while DMD and the ERA were developed in different contexts, they are closely related: the low-order linear
operators central to each method are only related by a similarity transform [31]. Furthermore, DMD has been designed
to analyze data generated by any dynamical system (the system can be nonlinear and may have inputs) but does not
originally explicit how to get input-influence or output-influence matrices, which ERA does. More importantly, DMD
is missing the important concept of kinematic similarity among linear discrete-time-varying system models and the
time-varying transformations involved in the state transition matrices.

This paper aims to demonstrate the capabilities of these algorithm to provide a reduced-order model to reproduce the
aerothermoelastic response of a hypersonic vehicle. Section II will briefly introduce the basic concepts of realization for
time-varying systems while Section III will provide a detailed description of TVERA for autonomous systems and a
step by step procedure to compute the state-space matrices of a reduced-order identified system from experimental
data only. To validate the developed approach, Section IV considers two numerical simulations involving the nonlinear
dynamics of a simplistic heated panel as well as a high-fidelity simulation that couples the aeroelastic response during
atmospheric flight.

I1. Problem Statement
Although almost every physical system contains nonlinearities, oftentimes its behavior within a certain operating
range of a nominal trajectory can be reasonably approximated by that of a linear model. One reason for approximating



the nonlinear system by a linear model of the form is that one can apply rather simple and systematic linear control or
extract quantities that are representative of the true system behavior. These parameters are related to some intrinsic
characteristics of the systems and are useful to the analyst (eigenvalues and eigenvectors are related to the natural
frequencies and modes of the system for example).

Start with a simple first-order nonlinear dynamic system
x(t) = f(x(@),u(t)), withx(0)=x, (1)
along with a measurement equation
y(1) = g(x(), u()). 2)

Assume that under usual working circumstances this system operates along the trajectory x*(¢) while it is driven by the
system input u*(z). x* and u* are called the nominal system trajectory and the nominal system input, respectively. On
the nominal trajectory the following differential equation is satisfied

(1) = f(x* (1), u*(r)), with x*(0) = x7, (3a)
yX(t) = g(x* (1), u*(1)). (3b)

Assume that the motion of the nonlinear system is in the neighborhood of the nominal system trajectory, that is

x(t) = x*(t) + 6x(t), 4)
sustained by a system input close to the nominal input

u(t) = u*(t) + ou(?). 5)

The departure dynamics is the dynamical system verified by dx(¢) and du(z), that is

0x(t) = Ac(1)6x(t) + B.(t)ou(t), with 5x(0) = 6xy, (6a)
oy (t) = C(t)ox(t) + D(t)ou(r), (6b)
with
0
A= , (7a)
X lex(0).ux(r)
0
B.(t) = a—f , (7b)
Ul (e (1)
=2 , 7o)
6x x* () u*(t)
og
Dy =28 . (7d)
O |x (1) (1)
In discrete-time, these equations become
ox(k+1) = Ardx(k) + Brou(k) (8a)
O0y(k) = Crox(k) + Drou(k) (8b)

The time-varying system identification algorithm developed in this paper will be used to compute a realization of the
system matrices { A, By, Cx, D¢ }.



ITI. General Methodology

A. Preliminaries on time-varying System Identification

Due to its efficiency and robustness of implementation in numerous areas of engineering, the Eigensystem
Realization Algorithm (ERA) has occupied a central stage in the current and expansive field of system identification. As
a consequence, the associated algorithms have contributed to several successful applications in design, control, and
model order reduction of dynamical systems.

The most crucial advancement in the realization theory of time-varying systems thus far is the effects of time-varying
coordinate systems. In contrast with time invariant (shift invariant) systems, state matrices of two different realizations
of a time-varying system are not similar. From an input and output standpoint, two realizations of the same system are
said to be topologically equivalent and the state matrices sequence said to be kinematically similar. Figure[T|highlights
the main difference between equivalence and topological equivalence for time-invariant and time-varying systems.

x(k+ 1) = Az(k) + Bu(k)
y(k) = Cx(k) + Du(k)

A A=T71AT
B Equivalent Realizations B 7B
C Similarity T:ansformation é =CT

D D=D

z(k+1) = Arz(k) + Bru(k)
y(k) = Cra(k) + Dru(k)

Ak Topologically Equivalent Ak’ = TkjrllAk"Tk’
By, Realizations Bk = Tk_+11 By,
Ck Kinematic;IIy Similar ék = Cka

Dy Transformation Dk — Dy,

Fig.1 Linear time-invariant and linear time-varying systems: difference between equivalence and topological
equivalence

In general, the identified system representation {Ak, l-?k, C'k, [)k} at each time k is not represented in the same
coordinate system as the true system representation { Ax, B, Cx, Dy } and the state propagation for linear time-varying
systems takes place between time-varying coordinate systems. While the system matrices do not need any type of
correction during the propagation itself (we will see that these matrices come from the same SVD at each time step),
two equivalent realizations { Ay, By, Cx, Dy } and {Ay, B, Cy By} are not similar; rather they are topologically equivalent.
Topological equivalence (or kinematic equivalence) means that there exists a sequence of invertible, square matrices
(not necessarily related to each other, Lyapunov transformations) 7y such that

Ax =T ATy 9)
By = T[] B (10)
Cr = CkTx (11)
Dy = Dy (12)

The most important diagnosis to make is that the identified system matrix A and the true system matrix A do not
have the same eigenvalues. Because the system evolution takes place in two different coordinate systems, Ty.; and
Ty, this leads the basis vectors for the initial time step and the final time step to be different. Therefore, the situation
is quite similar to body-fixed, rotating coordinate systems in rigid body dynamics, with the exception that the frames



(basis vectors can be thought of as frames) are unknown, arbitrarily assigned by the singular value decomposition.
However, one can extract time-varying quantities that are representative of the true time-varying system behavior from
these topologically equivalent (kinematically similar) transformations. These parameters are the eigenvalues of the
time-varying system matrices (true and identified) all transformed into a reference coordinate system. In order to do so,
define the quantity

AP AP _ 1 o (p)T
0 0 =17'0" 0% Ty, (13)

with OECP ) is the observability matrix at time k

Ck
Ci+1Ax
05{”) = Cir2Ap 1Ak , (14)

Crap-1Akip-2 - - - Ak

Now we proceed to use the correction to the left of Ax and obtain a corrected system matrix

X A Ap) 4 _ ¥ _ _ T s
A =0 07\ A =110V OP) T T ATy = 10V OF) ATy = T AT, (15)

and the matrices Ay and A; are now equivalent. This is a central result for the time-varying eigensystem realization
algorithm. For the system identification problem, when the true and identified systems are kinematically similar
realizations, the identified and true system share common eigenvalues after transformation.

B. Time-varying Eigensystem Realization Algorithm for an autonomous system (TVERA)
This section introduces the basics of time-varying linear system identification for time-varying linear systems subject
to an initial condition response (autonomous system). A linear discrete-time varying autonomous system is given by

x(k+1)=Arx(k) (16a)

y(k) = Cyx(k) (16b)

together with an initial state vector x(0), where x(k) € R" and y(k) € R™ are the state and output vectors respectively,

k > 0. The time-varying (non constant) matrices Ay and C; with appropriate dimensions represent the internal operation

of the linear system, and are used to determine the system’s response to any arbitrary initial condition. The solution of
the difference equation, given in Eqgs. (I6) is given by

x(k) = ®(k, 0)x(0), (17a)

y(k) = Cr®(k, 0)x(0), (17b)

where the state transition matrix is defined in terms of its components by

Ag—1Ak—2 ... Ako for k > ko,
DOk, ko)=14 1 for k = ko, (18)
undefined for k < ko.

The method for computing the system matrices using a set of experimental data {y*},_ n (free response experiments)
. . . =N
involves the construction of the matrix H ;{p ),

yi! Y2 N
#1 # ..  #N
H;(p,N)z yk.+l yk‘+l | yk.+1 _in)chN)’ (19)
#1 ) #N
Yiip-1 Ykp-1 " Viapa



where 0;(” ) is the observability matrix at time k

Cr
Cr+14k
oY = CrnAks1Ar |, (20)

Ciip-1Arsp-2 ... Ak
and X ;(N) is a state variable ensemble at time k:

XV = |0k 0)xf! 00X - 0k 0| e RV, 2D

The state variables x}', x32, ... x#N

0 X0
. . . (PN
derived. The parameter p and the number of free response experiments N are chosen such that the matrix H gw

are simply the initial conditions from where the free response experiments are

) retains

the rank n, the true state dimension. Indeed, if pm > n and N > n, matrices 05{’7 ) and X E{N) are of rank maximum n

(equal to n for X QN)). If the system is observable, the block matrix 05{’) ) is of rank exactly n and so is H E(p ol Identifying
the number of dominant singular values of the Hankel matrix will thus provide an indication about the unknown order
of the reduced model to be identified. Differing ranks are possible for this generalized time-varying matrix H Ecp N at
every time step for the variable state dimension problem. However, it is assumed that the state dimension does not
change with the time index and it is not difficult to see that this assumption can be relaxed, given some adjustments. We
retain the assumption owing to our focus on mechanical systems, in which the connection between physical degrees of
freedom and the number of state variables allows us to hold the dimensionality of the state space fixed throughout the
time interval of interest.

As for the general procedure in ERA or TVERA, using the singular value decomposition of H ;{p ’N), we can write

AV - U VT = [Uin) Ujf)] );(%m Z(()O) ://g)')): (22a)
k k
= yEY T L g OOy O (22b)
=0
~ yEmy T (22¢)

where the approximation at a given time step k is made possible by rejecting the small singular values. Indeed, some
singular values of X; may be relatively small and negligible in the sense that they contain more noise information
than system information. Hence, the approximation U ;(0)210)‘/(0)]: ~ () (truncation of nonzero small singular values) is
to account for noise in the data and for quantitatively partitioning the realized model into principal and perturbation
(noise) portions so that the noise portion can be disregarded. In other words, the directions determined by these singular
values have less significant degrees of observability relative to noise. The reduced model of order n after deleting these
singular values is then considered as the robustly observable part of the realized system. In terms of the corresponding
observability and state variable ensemble matrices,

() ()5 (m) 1/
7 0N) _ ey T _ (p) g (V) O, =UL,
H " =U L7V," =0.7X, :>{ XN _ g2y mT @3)
kT “k k
The same procedure at time step k + 1 will lead to
) () y(m) 12
7 (0N) _ 1(n) (1) o) T _ () (V) O = Ui Zien
Hi =U i Z Vi = 00X = { X(;\;) B 2(,3 1/2;(,1) T (24)
k+1 — “k+1 k+1

Note that the state variable ensemble matrix X ggi at time k + 1 is related to the state variable ensemble matrix X §<N) at
time k by

(N) _ 4 )
XM = Ax! (25)



which leads to the estimate

~ -1
A =x0x (26)

for the time-varying state matrix. The calculation of the corresponding Cy is accomplished by setting
Ce = 0P[0: m,:). Q7

Finally, in case the initial condition of the signal of interest is not part of the state variable ensemble at time 0, X E)N), one
needs to identify the initial condition with an additional development. Writing the general expression of the output at
the initial time for an additional p more time steps, one obtain a set of equations that can be written in a matrix form as

yP(0) = 0P x(0) (28)
with
Co
y(0) CiA
(1) 140
wo=| 7] o= s | (29)
yip-1)

Cp_lAp_z ... Ao

Eq. (28) can be solved using the least-squares solution:

£(0) = og’” yP)(0). (30)

IV. Numerical simulations
This section aims to demonstrate the efficacy of the proposed approach for identifying a reduced-order model of a
coupled thermal-structural response in an aerothermoelastic simulation. Two cases are considered. First, a simplistic
model for the flutter of a panel with prescribed increasing temperature is studied. This numerical simulation allows
us to demonstrate the capability of the developed algorithm on a low order model where the measurements are of
low dimension. Second, a fully-coupled nonlinear aerothermoelastic models is studied. This numerical simulation
demonstrates the generalizability of the TVERA algorithm to high-dimensional problems.

A. The panel flutter problem
The supposed unknown nondimensionalized equations for the flutter of a panel are [[14]

1 5 4 1 [ag, 1,

57T46]1(f) ~ 5T Rrqi(1) + Z7T4C]f(f) - g/lqz(f) + 52t qi(t)q3 (1) + 5V 4 (1) + 341 (1) =0, (31a)
f 4 _ 2 4 2 4 3 l /1_# ’ 1 e
3/1q1 (1) + 87" qa(t) = 20" Ry qa(t) + 51" g7 ()qa(t) + 2077 g5 (1) + Nu q,(t) + 2q2 () =0. (31b)

where ¢g; and g, are structural modal coordinates, A is the dynamic pressure quantifying the aerodynamic loading, u
is the mass ratio quantifying the aerodynamic damping effect, Ry is the in-plane force due to the thermal stress. In
general, when Ry = 0, there is a critical value A.,, such that the panel stays stable when 4 < A.,, but enters limit
cycle oscillation when A4 > A.,. When Ry > 0, the critical value A, still exists. However, the panel may become
statically buckled or enter chaotic response instead of being stable, when 4 < A.,. In this example, it is assumed that
Ry =2t +0.01, i.e. the in-plane force increases linearly in time.

Let q(r) = [ql(t) @) qi(t) ;@) ", We introduce the function f that describes the dynamics presented above
and write the dynamical system as

q'(t) = f(q(®).1). (32)



The linearized version of (32) is

q'(t) = Ac(1)q(1) (33)
with
0 0 1 0
0 0 1
of 15 8 1
A.(t): —_ =|_,4 2 R ) _ 4—2 8 4 _ _ 7/1
T Olgagy | IO R m (O 10T 0) 34~ 20771 (0)gx(0) Var ©
8 P
—34- 207G, (1)g(1) ~167* + 4072 Ry — 1073 (1) — 1207 G3(r) 0 - ﬁl‘

(34)

where A.(¢) is the continuous-time linearized version matrix of f and g(¢) is a nominal trajectory. This nominal
trajectory is an initial condition response with initial state

70 =[o 0001 0 0] " (35)
and is referred as the frue trajectory. Additionally, we define the measurement equations

y() =Cq(t) (36)

where C = Iixa. (33) and (36) form the first order continuous state-space dynamics. In order to compare with the
identified models, analytical discrete-time models are generated by computing the state transition matrix. Indeed,
integrating the state transition matrix between two consecutive time steps is the equivalent of the matrix multiplication
by Ax. Because the system matrices are time varying, the matrix differential equation is given by

bt 1) = Ac(O)Q(t, 1), V1 € [tr, trs1], (37
with initial condition
D(tr, te) = Lixas (38)
such that
A = O(tg+1, 1) (39)

would represent the equivalent discrete-time varying system matrix (true model). The resulting trajectory satisfies the
difference equation:

q(k +1) = Agq(k) (40a)
y(k) = Cq(k) (40b)

and are the analogous of and (I6B) from the previous section. Note that y(k) = g(k) since C is the identity.

The procedure to compute the identified system matrices Ay and Cy is as follow:

1) Generate N initial condition responses using (3Ta) and (3TB) in order to form H ip "™ Note that for this particular
system of order n = 4, N and p must satisfy N > 4 and pm > 4 with m = 4.

2) At each time step, perform a SVD on H Ecp "M and find OE{p) and X ;{N).

3) Compute Ay and Cy, with (26) and 7).

4) Identify the initial condition of the nominal trajectory using the previous developments from to (30).

The system matrices thus obtained are used to propagate the trajectory. For this simulation, four random initial
conditions are considered (with a standard deviation of 10~ around the nominal), resulting in N = 4. p is chosen to be 1
and the data is recorded at a frequency of S0Hz for 5 sec. Figure|2|shows how the identified system performs compared
to the local linearization approximated trajectory. The TVERA procedure is able to provide a linear time-varying system
that approximates the dynamics of the nonlinear system presented above. Absolute and RMS errors are presented in



Table[T] While both identified and linearized systems seems to be a good linear approximation for the true system,
the linearized version completely degrades once it enters the oscillatory regime. On the other hand, the identified
system is able to capture the long-term trend over the time interval of interest. Figure [3]shows the evolution of the SVD

. . (N . . . . .
decomposition of the matrix H g ). One can observe four dominant singular values at each time step, consistent with

the actual order n = 4 of the system.
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Table 1 Identification Errors

Output RMS Error Mean Absolute Error
Identified System | Linearized System | Identified System | Linearized System
q1 3.74-1073 3.57-107! 2.63-1073 2.12-107!
P 1.69-1073 2.14-107! 1.14-1073 1.33-107!
q; 7.75-1072 7.83 5.12-1072 4.85
95 479 -1072 6.73 3.16-1072 3.89
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Fig.3 Evolution of the magnitude of the singular values from singular value decomposition

The TVERA approximation turns out to be more accurate than the local linearization thanks to the singular value
decomposition at the heart of the procedure. Since the Moore-Penrose pseudoinverse (or peudoinverse in short) is a
natural consequence from applying the singular value decomposition to the least squares problem, the SVD resolves the
least squares problem into two components: (1) a range space part which can be minimized, and (2) a null space term
which cannot be removed - a residual error, due to the fact that the system is over-constrained. Hence, while TVERA
provides a least-square solution for A; at each time step over a time interval, the linearized (or true) Ax represents the
local tangent at time #;. The linearization does not benefit from values in the neighborhood of #; to compute the best
linear approximation at time #;, which TVERA takes advantage of.

B. High-dimensional nonlinear aerothermoelastic simulation

Subsequently, the same type of analysis is applied to a high-dimensional nonlinear aerothermoelastic problem. The
aerothermoelastic simulation is performed using the HYPATE framework, which has been extensively verified and
applied to various hypersonic aerothermoelastic problems [3,[12]. In this study, the low-fidelity portion of the framework
is employed. In the aerothermodynamic solver, the pressure and the heat flux are computed using full-order piston
theory and Eckert’s reference enthalpy method, respectively. The structural and thermal solvers are both based on the
finite element formulation. The structural solver models the structural dynamics of anisotropic (i.e. composite) shallow
shells with shear, geometric nonlinearity, and thermal stress. The thermal solver models heat transfer in composite
shells using a layer-wise thermal lamination theory. Both solvers account for temperature-dependent material properties.
The solvers of the three physical domains are solved using a second-order time-accurate loosely-coupled scheme.

In this example, a 2D skin panel configuration is considered, as shown in Figure[d] The panel is simply supported at
the leading and trailing edges. The geometrical parameters are 4 = Smm, a = 1m, and L;. = Im. The panel is made of

10



Al7075 and the material properties are temperature dependent. The initial temperature is 7 = 273K.

1 I Iy
I I
Approaching flow : :
_—
| | ln
1 2 I
Panel
1 I
Rigid wall | z.  Rigid wall \
| | ] |
< L. > a < Iy >

Fig.4 2D skin panel configuration
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Fig. 5 Evolution of the panel shape over the time

The measurement equation is now directly about the displacement of the structure, creating a vector of dimension
101. The initial absolute perturbation applied to the panel ranges from 8 - 107 Pato 1 - 10* Pa. Two sets of experiment
are created for the study: one will serve as a training set for TVERA and one will be used for testing the accuracy of the
derived model. The specifics for each set re gathered in Table[I] The numerical data is acquired for 2 seconds at a
frequency of 1000 Hz resulting in 2001 data points. The procedure we employ for this numerical simulation is similar
as before and a reduced model of order n = 6 has been found to be the most accurate. Although the resulting order of
the reduced model is usually found by examining the singular value decomposition plot, the one provided Figure [6]
doesn’t allow the analyst to gain too much insight. While it seems that 6 singular values could be found to be of greater
magnitude than the rest of the sequence, it is difficult to acknowledge the presence of a clear cut criteria, especially as
time increases.

Figures[7]and 8] show the evolution of the modes shape throughout the time for the true and the identified systems.
The Figures present a sample of six responses from the training and testing sets. The identified linear time-varying
model is able to capture the deformation of the panel correctly, with more accuracy for lower times. As time increases,
the identified model tends to over estimates the magnitude of the deformation although capturing the right modes. An
other visualization is presented with Figures 0] and [T0]displaying the mid-point displacement of the panel. The left
columns superimpose the true and the identified models while the right columns disclose the error between the two.
Tables [3]and [4] gather the relevant identification errors for the training and testing data sets. While the peak to peak
amplitudes, frequencies and phases errors are minor, the shift in magnitude is the main source of error.
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Fig. 6 Evolution of the magnitude of the singularvalues from singularvalue decomposition

Table 2 Values of the initial perturbation for both sets of experiments

Training Set Testing Set

-1.0-10*Pa | -9.8-107 Pa
-9.6-102Pa | =9.5-107 Pa
-92-107Pa | =9.4-107 Pa
-8.8-10°Pa | -9.0-107 Pa
—84-10°Pa | —-8.6-107 Pa
-8.0-10°Pa | =8.5-107 Pa
+8.0-10°Pa | —=8.2-107 Pa
+8.4-107Pa | +8.2-107 Pa
+8.8-10 Pa | +8.5-107 Pa
49210 Pa | +8.6-107 Pa
+9.6-102 Pa | +9.0- 107 Pa
+1.0-10*Pa | +9.4-107 Pa
+9.5-107 Pa
+9.8-107 Pa
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Table 3 Identification Errors for the Training Set

True Signal H Training Set

Peak to peak Amp. || Worst error | Best error RMSE Average abs error

6.8519- 10~ 4.87-107% | 2.01-1077 | 2.03-107° 3.15-107°
Frequency Worst error | Best error RMSE Average abs error

45.098 1261077 [ 225107 | 1.44-107% 5.69-1078
Phase Worst error | Best error RMSE Average abs error

0 6.57-107 | 2.66-107° | 5.31-107* 1.01-1073
Shift Worst error | Best error RMSE Average abs error

0 9.95-107° | 6.30-10% | 8.76- 1077 9.65- 1077

Table 4 Identification Errors for the Testing Set

True Signal H Testing Set

Peak to peak Amp. Worst Best RMSE Average abs error

6.8519 - 10~ 4.12-107% | 2.23-107% | 2.56-107° 3.89-107°
Frequency Worst Best RMSE Average abs error

45.098 2.99-1077 | 6.37-107° | 2.30-107% 8.51-1078
Phase Worst Best RMSE Average abs error

0 9.85-107% | 4.49-107° | 4.21-107* 8.41-107*
Shift Worst Best RMSE Average abs error

0 1.20-1073 | 5.10- 1077 | 9.91-1077 1.03-107°¢
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Fig. 7 Illustration of the modes shape for six responses from the training set
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Fig. 8 Illustration of the modes shape for six responses from the testing set
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V. Conclusion

This work has presented a new time-varying identification method and its application to build a first-order
approximation of a nonlinear dynamical system from repeated experiments. Specifically, the new algorithm is employed
to generate reduced-order models of coupled thermal-structural responses for an academic panel flutter problem with
time-varying thermal stress and a fully-coupled aerothermoelastic problem. The time-varying linear systems identified by
the new algorithm were able to capture the nonlinear aerothermoelastic responses, including the limit cycle oscillations,
with accurate reproduction of the amplitude, phase and frequency. The cases demonstrate the capability of the developed
algorithm on a low order model where the measurements are of low dimension, as well as its generalizability to
high-dimensional problems.

Towards practical aero-thermo-servo-elastic analysis of hypersonic vehicles, strong stochastic dynamics due to
the atmospheric and aerothermal environments must be taken account of. The combination of time-varying versions
of ERA and OKID (and also with data correlation) provides a viable means to tackle the challenge of uncertainty
quantification in a nonlinear and high-dimensional system like the ATSE model. Specifically, it is possible to build
the ROM of coupled thermal and structural response in a nominal ATSE simulation and couple the new thermoelastic
ROM to the aerothermal model, so as to produce a computationally efficient linear time-varying ATSE model, which
can be subsequently employed to study the departure dynamics of nonlinear ATSE response and perform uncertainty
quantification of the ATSE responses over the entire trajectory of a hypersonic vehicle.
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